ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • American Geophysical Union
  • 2020-2024  (2)
  • 1995-1999
  • 1965-1969
  • 1960-1964
  • 2024  (2)
Collection
Publisher
Years
  • 2020-2024  (2)
  • 1995-1999
  • 1965-1969
  • 1960-1964
Year
  • 1
    Publication Date: 2024-03-31
    Description: Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2= 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2= 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (〉66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
    Keywords: community assembly ; dispersal limitation ; environmental selection ; evolutionary principal ; component analysis ; indicator lineage analysis ; Moran's eigenvector maps ; neotropics ; Niche ; conservatism ; tropical rain forests
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-05
    Description: The Hikurangi Margin east of New Zealand's North Island hosts an extensive gas hydrate province with numerous gas hydrate accumulations related to the faulted structure of the accretionary wedge. One such hydrate feature occurs in a small perched upper‐slope basin known as Urutī Basin. We investigated this hydrate accumulation by combining a long‐offset seismic line (10‐km‐long receiver array) with a grid of high‐resolution seismic lines acquired with a 600‐m‐long hydrophone streamer. The long‐offset data enable quantitative velocity analysis, while the high‐resolution data constrain the three‐dimensional geometry of the hydrate accumulation. The sediments in Urutī Basin dip landward due to ongoing deformation of the accretionary wedge. These strata are clearly imaged in seismic data where they cross a distinct bottom simulating reflection (BSR) that dips counterintuitively in the opposite direction to the regional dip of the seafloor. BSR‐derived heat flow estimates reveal a distinct heat flow anomaly that coincides spatially with the upper extent of a landward‐verging thrust fault. We present a conceptual model of this gas hydrate system that highlights the roles of fault‐controlled fluid flow at depth merging into strata‐controlled fluid flow into the hydrate stability zone. The result is a layer‐constrained accumulation of concentrated gas hydrate in the dipping strata. Our study provides new insight into the interplay between deep faulting, fluid flow and gas hydrate formation within an active accretionary margin. Plain Language Summary Gas hydrates are ice‐like substances in which natural gas molecules are trapped in a cage of water molecules. They exist where the pressure is high, temperature is cold, and enough methane is present. These conditions exist in the marine environment at water depths greater than 300–500 m near sediment‐rich continental margins and in polar regions. It is important to study gas hydrates because they represent a significant part of the Earth's carbon budget and influence the flow of methane into the oceans and atmosphere. In this study, we use the seismic reflection method to generate images of gas‐hydrate‐bearing marine sediments east of New Zealand. Our data reveal an intriguing relationship between deep‐sourced fluid flow upward along a tectonic fault, and shallower flow through dipping sediments. This complex fluid flow pattern has led to disruption of the gas hydrate system and the formation of concentrated gas hydrate deposits within the dipping sediments. Our study highlights the relationships between relatively deep tectonic processes (faulting and fluid flow) and the shallow process of gas hydrate formation in an active subduction zone. Key Points A distinct gas‐hydrate to free‐gas transition is mapped using high‐ and low‐frequency seismic data Gas and hydrate accumulations in the Urutī Basin are controlled by the structural setting, ongoing deep‐sourced fluid flow, and near surface stratigraphy Regions of high modeled heat flow can be directly related to accumulations of gas and gas hydrates
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...