ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
  • American Meteorological Society
  • EDP Sciences
  • Oxford University Press
  • 2020-2024  (3)
  • 2015-2019
  • 2010-2014
  • 1965-1969
  • 1955-1959
  • 2024  (3)
Collection
Years
  • 2020-2024  (3)
  • 2015-2019
  • 2010-2014
  • 1965-1969
  • 1955-1959
Year
  • 1
    Publication Date: 2024-03-12
    Description: Statistical models of the variability of plasma in the topside ionosphere based on the Swarm data have been developed in the “Swarm Variability of Ionospheric Plasma” (Swarm-VIP) project within the European Space Agency’s Swarm+4D-Ionosphere framework. The models can predict the electron density, its gradients for three horizontal spatial scales – 20, 50 and 100 km – along the North-South direction and the level of the density fluctuations. Despite being developed by leveraging on Swarm data, the models provide predictions that are independent of these data, having a global coverage, fed by various parameters and proxies of the helio-geophysical conditions. Those features make the Swarm-VIP models useful for various purposes, which include the possible support for already available ionospheric models and proxy of the effect of ionospheric irregularities of the medium scales that affect the signals emitted by Global Navigation Satellite Systems (GNSS). The formulation, optimisation and validation of the Swarm-VIP models are reported in Paper 1 (Wood et al. 2024. J Space Weather Space Clim. in press). This paper describes the performance assessment of the models, by addressing their capability to reproduce the known climatological variability of the modelled quantities, and the ionospheric weather as depicted by ground-based GNSS, as a proxy for the ionospheric effect on GNSS signals. Additionally, we demonstrate that, under certain conditions, the model can better reproduce the ionospheric variability than a physics-based model, namely the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM).
    Description: Published
    Description: 4
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  EPIC3Science, American Association for the Advancement of Science (AAAS), 383(6685), pp. 884-890, ISSN: 0036-8075
    Publication Date: 2024-03-21
    Description: Much of our understanding of Cenozoic climate is based on the record of δ18O measured in benthic foraminifera. However, this measurement reflects a combined signal of global temperature and sea level, thus preventing a clear understanding of the interactions and feedbacks of the climate system in causing global temperature change. Our new reconstruction of temperature change over the past 4.5 million years includes two phases of long-term cooling, with the second phase of accelerated cooling during the Middle Pleistocene Transition (1.5 to 0.9 million years ago) being accompanied by a transition from dominant 41,000-year low-amplitude periodicity to dominant 100,000-year high-amplitude periodicity. Changes in the rates of long-term cooling and variability are consistent with changes in the carbon cycle driven initially by geologic processes, followed by additional changes in the Southern Ocean carbon cycle. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  EPIC3Science, American Association for the Advancement of Science (AAAS), ISSN: 0036-8075
    Publication Date: 2024-07-11
    Description: One of Earth’s most fundamental climate shifts – the greenhouse-icehouse transition 34 Ma ago – initiated Antarctic ice-sheet build-up, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7–33.2 Ma) that immediately followed this transition, a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization, is uncertain. Here, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica’s Pacific margin – a key region for understanding Antarctic ice sheet-evolution. These data indicate a cool-temperate environment, with mild ocean and air temperatures preventing West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...