ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (30)
  • 2020-2024  (30)
  • 2023  (30)
Collection
Keywords
Years
  • 2020-2024  (30)
Year
  • 1
    Publication Date: 2024-02-02
    Description: Underway temperature and salinity data was collected along the cruise track with two autonomous thermosalinograph (TSG) systems, each consisting of a SBE21 TSG together with a SBE38 Thermometer. Both systems worked independent from each other throughout the cruise. While temperature is taken at the water inlet in about 5 m depth, salinity is estimated within the interior TSG from conductivity and interior temperature. No correction against independent data was performed neither for temperature nor for salinity. Finally, TSG2 was chosen for publication. For details to all processing steps see Data Processing Report.
    Keywords: Calculated from internal temperature and conductivity; Conductivity; DAM_Underway; DAM Underway Research Data; DATE/TIME; DEPTH, water; Digital oceanographic thermometer, Sea-Bird, SBE 38; LATITUDE; LONGITUDE; M183; M183_0_Underway-3; Measurement container; Meteor (1986); Quality flag, salinity; Quality flag, water temperature; RIFLOR_1; Salinity; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Temperature, water; Temperature, water, internal; Thermosalinograph; Thermosalinograph (TSG), Sea-Bird, SBE 21 SEACAT; TSG
    Type: Dataset
    Format: text/tab-separated-values, 193268 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-06
    Description: Plankton communities play a key role in the marine food web and are expected to be highly sensitive to ongoing environmental change. Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. These changes–summarized by the term ocean acidification (OA)–can significantly affect the physiology of planktonic organisms. However, studies on the response of entire plankton communities to OA, which also include indirect effects via food-web interactions, are still relatively rare. Thus, it is presently unclear how OA could affect the functioning of entire ecosystems and biogeochemical element cycles. In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 μatm pCO2). Based on a plankton-imaging approach, we examined size structure, community composition and food web characteristics of the whole plankton assemblage, ranging from picoplankton to mesozooplankton, during an entire winter-to-summer succession. The plankton imaging system revealed pronounced temporal changes in the size structure of the copepod community over the course of the plankton bloom. The observed shift towards smaller individuals resulted in an overall decrease of copepod biomass by 25%, despite increasing numerical abundances. Furthermore, we observed distinct effects of elevated CO2 on biomass and size structure of the entire plankton community. Notably, the biomass of copepods, dominated by Pseudocalanus acuspes, displayed a tendency towards elevated biomass by up to 30–40% under simulated ocean acidification. This effect was significant for certain copepod size classes and was most likely driven by CO2-stimulated responses of primary producers and a complex interplay of trophic interactions that allowed this CO2 effect to propagate up the food web. Such OA-induced shifts in plankton community structure could have far-reaching consequences for food-web interactions, biomass transfer to higher trophic levels and biogeochemical cycling of marine ecosystems.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Coulometric titration; Day of experiment; Entire community; Equivalent spherical diameter; Event label; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gullmar Fjord, Skagerrak, Sweden; Hand-operated CTD (Sea&Sun Technology, CTD 60M); KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; MESO; Mesocosm experiment; Mesocosm or benthocosm; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particle concentration; Particle size spectrum; Pelagos; pH; Phosphate; Plankton, biomass, dry mass; Salinity; Sample code/label; Silicate; Spectrophotometric; Temperate; Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 20276 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-06
    Description: As one of Earth's most productive marine ecosystems, the Peruvian Upwelling System transports large amounts of biogenic matter from the surface to the deep ocean. Whilst particle sinking velocity is a key factor controlling the biological pump, thereby affecting carbon sequestration and oxygen-depletion, it has not yet been measured in this system. During a 50-day mesocosm experiment in the surface waters off the coast of Peru, we regularly sampled sedimented material (sampling depth: 17 m) and analyzed the properties of sinking particles using an optical measurement approach. The presented dataset includes sinking velocity, particle size (ESD), compactness (porosity) and shape (aspect ratio) of 〉100.000 individually measured particles.
    Keywords: Aspect ratio; Climate - Biogeochemistry Interactions in the Tropical Ocean; DATE/TIME; Day of experiment; DEPTH, water; Equivalent spherical diameter; Experimental treatment; export flux; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Particle porosity; Peruvian Upwelling System; Phytoplankton; Sample code/label; SFB754; sinking velocity; Sinking velocity
    Type: Dataset
    Format: text/tab-separated-values, 821688 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-06
    Description: As one of Earth's most productive marine ecosystems, the Peruvian Upwelling System transports large amounts of biogenic matter from the surface to the deep ocean. Whilst particle sinking velocity is a key factor controlling the biological pump, thereby affecting carbon sequestration and oxygen-depletion, it has not yet been measured in this system. During a 50-day mesocosm experiment in the surface waters off the coast of Peru, we regularly measured particle sinking velocities and their biogeochemical and physical drivers. We further characterized the general properties of sinking matter (sampling depth: 17 m) under different phytoplankton communities and nutritional states. This dataset contains mean velocities of sinking particles as well as their median size, compactness and shape. We further included the particulate organic carbon flux, the sinking matter nitrogen to phosphorus ratio and the relative contribution of opal and particulate inorganic carbon to the total flux. The particle flux characteristics are complemented by measurements of chlorophyll a concentration in the water column and the relative contribution of diatoms to total chlorophyll a.
    Keywords: Aspect ratio; Biogenic silica; Carbon, inorganic, particulate; Carbon, organic, particulate, flux per day; Chlorophyll a; Chlorophyll a, Diatoms; Climate - Biogeochemistry Interactions in the Tropical Ocean; DATE/TIME; Day of experiment; Depth, bottom/max; Depth, top/min; DEPTH, water; Equivalent spherical diameter; Experimental treatment; export flux; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Nitrogen/Phosphorus ratio; Particle porosity; Peruvian Upwelling System; Phytoplankton; Sediment trap; SFB754; sinking velocity; Sinking velocity
    Type: Dataset
    Format: text/tab-separated-values, 3317 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-22
    Description: An indoor mesocosm experiment was carried out to investigate the combined effects of ocean acidification and warming on the species composition and biogeochemical element cycling during a winter/spring bloom with a natural phytoplankton assemblage from the Kiel fjord, Germany. The experimental setup consisted of a “Control” (ambient temperature of ~4.8 °C and ~535 ± 25 μatm pCO2), a “High-CO2” treatment (ambient temperature and initially 1020 ± 45 μatm pCO2) and a “Greenhouse” treatment (~8.5 °C and initially 990 ± 60 μatm pCO2). Nutrient replete conditions prevailed at the beginning of the experiment and light was provided at in situ levels upon reaching pCO2 target levels. A diatom-dominated bloom developed in all treatments with Skeletonema costatum as the dominant species but with an increased abundance and biomass contribution of larger diatom species in the Greenhouse treatment. Conditions in the Greenhouse treatment accelerated bloom development with faster utilization of inorganic nutrients and an earlier peak in phytoplankton biomass compared to the Control and High CO2 but no difference in maximum concentration of particulate organic matter (POM) between treatments. Loss of POM in the Greenhouse treatment, however, was twice as high as in the Control and High CO2 treatment at the end of the experiment, most likely due to an increased proportion of larger diatom species in that treatment. We hypothesize that the combination of warming and acidification can induce shifts in diatom species composition with potential feedbacks on biogeochemical element cycling.
    Keywords: Alkalinity, total; Aragonite saturation state; Baltic Sea; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Phosphorus, organic, particulate ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Coulometric titration; Entire community; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Mesocosm or benthocosm; Nitrogen, organic, particulate/Phosphorus, organic, particulate ratio; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; pH; Potentiometric titration; Replicate; Salinity; Temperate; Temperature; Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 5537 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-15
    Description: Ocean acidification—the decrease in seawater pH due to rising CO2 concentrations—has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO2 , but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO2 conditions (~760 µatm pCO2 ) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO2 -stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO2 ocean.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chordata; Clupea harengus; Clupea harengus, larvae; Coast and continental shelf; Community composition and diversity; Copepodites; Coulometric titration; DATE/TIME; Day of experiment; Entire community; Event label; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Guinardia stolterfothii; Gullmar Fjord, Skagerrak, Sweden; Hand-operated CTD (Sea&Sun Technology, CTD 60M); KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; Mortality/Survival; Nauplii; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particle concentration; Pelagos; pH; Phosphate; Salinity; Silicate; Single species; Spectrophotometric; Status; Survival; Temperate; Temperature, water; Time in days; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 16110 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  University of Bremen
    Publication Date: 2024-04-20
    Description: Raw data acquired by position sensors on board RV METEOR during expedition M183 were processed to receive a validated master track which can be used as reference of further expedition data. During M183 the motion reference unit Kongsberg SeaTex AS MRU-5 combined with Kongsberg SeaTex AS Seapath 320 and two C and C Technologies GPS receivers C-NAV3050 were used as navigation sensors. Data were downloaded from DAVIS SHIP data base (https://dship.bsh.de) with a resolution of 1 sec. Processing and evaluation of the data is outlined in the data processing report. Processed data are provided as a master track with 1 sec resolution derived from the position sensors' data selected by priority and a generalized track with a reduced set of the most significant positions of the master track.
    Keywords: 1 sec resolution; AIMS3; CDRmare; CT; DAM_Underway; DAM CDRmare - AIMS3: Alternate scenarios, Innovative technologies, and Monitoring approaches for Sub-Seabed Storage of carbon dioxide; DAM Underway Research Data; M183; M183-track; Meteor (1986); Research Mission of the German Marine Research Alliance (DAM): Marine carbon sinks in decarbonisation pathways; RIFLOR_1; Underway cruise track measurements
    Type: Dataset
    Format: application/zip, 12.2 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-27
    Description: Although coccolithophore physiological responses to CO2-induced changes in seawater carbonate chemistry have been widely studied in the past, there is limited knowledge on the variability of physiological responses between populations from different areas. In the present study, we investigated the specific responses of growth, particulate organic (POC) and inorganic carbon (PIC) production rates of three populations of the coccolithophore Emiliania huxleyi from three regions in the North Atlantic Ocean (Azores: six strains, Canary Islands: five strains, and Norwegian coast near Bergen: six strains) to a CO2 partial pressure (pCO2) range from 120 to 2630 µatm. Physiological rates of each population and individual strain increased with rising pCO2 levels, reached a maximum and declined thereafter. Optimal pCO2 for growth, POC production rates, and tolerance to low pH (i.e., high proton concentration) was significantly higher in an E. huxleyi population isolated from the Norwegian coast than in those isolated near the Azores and Canary Islands. This may be due to the large environmental variability including large pCO2 and pH fluctuations in coastal waters off Bergen compared to the rather stable oceanic conditions at the other two sites. Maximum growth and POC production rates of the Azores and Bergen populations were similar and significantly higher than that of the Canary Islands population. This pattern could be driven by temperature–CO2 interactions where the chosen incubation temperature (16 °C) was slightly below what strains isolated near the Canary Islands normally experience. Our results indicate adaptation of E. huxleyi to their local environmental conditions and the existence of distinct E. huxleyi populations. Within each population, different growth, POC, and PIC production rates at different pCO2 levels indicated strain-specific phenotypic plasticity. Accounting for this variability is important to understand how or whether E. huxleyi might adapt to rising CO2 levels.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Azores_OA; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate; Carbon, inorganic, particulate, per cell; Carbon, inorganic, particulate, production per cell; Carbon, organic, particulate; Carbon, organic, particulate, per cell; Carbon, organic, particulate, production per cell; Carbon, organic, particulate, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coast and continental shelf; Emiliania huxleyi; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gran_Canaria; Growth; Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon per cell, standard deviation; Particulate organic carbon, production, standard deviation; Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Raunefjord_OA; Salinity; Single species; Site; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strain; Temperate; Temperature, water; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 9080 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-20
    Description: Raw data acquired by position sensors on board RV METEOR during expedition M183 were processed to receive a validated master track which can be used as reference of further expedition data. During M183 the motion reference unit Kongsberg SeaTex AS MRU-5 combined with Kongsberg SeaTex AS Seapath 320 and two C and C Technologies GPS receivers C-NAV3050 were used as navigation sensors. Data were downloaded from DAVIS SHIP data base (https://dship.bsh.de) with a resolution of 1 sec. Processing and evaluation of the data is outlined in the data processing report. Processed data are provided as a master track with 1 sec resolution derived from the position sensors' data selected by priority and a generalized track with a reduced set of the most significant positions of the master track.
    Keywords: AIMS3; Calculated; CDRmare; Course; CT; DAM_Underway; DAM CDRmare - AIMS3: Alternate scenarios, Innovative technologies, and Monitoring approaches for Sub-Seabed Storage of carbon dioxide; DAM Underway Research Data; DATE/TIME; LATITUDE; LONGITUDE; M183; M183-track; Meteor (1986); Research Mission of the German Marine Research Alliance (DAM): Marine carbon sinks in decarbonisation pathways; RIFLOR_1; Speed; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 7772 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-12
    Description: Physical oceanography data was acquired using a Seabird SBE9plus CTD underwater unit onboard RV METEOR during research cruise M183 between 13th July and 9th August 2022. The ship-based CTD-Rosette-System was additionally equipped with a Seabird SBE43 oxygen sensor. CTD data recording was controlled with SEASAVE software (version 7.26) on a computer linked to the SBE11plus V2 Deck Unit. Ship position was used to determine profiles location. Hydrographic data were processed to 1 sec bin resolution by using the SBE software (version 7.26.6). Pre-deployment data and obvious outliers were removed.
    Keywords: AIMS3; CDRmare; Conductivity; CTD, SEA-BIRD SBE 9 plus; CTD/Rosette; CTD casts; CTD-RO; DAM CDRmare - AIMS3: Alternate scenarios, Innovative technologies, and Monitoring approaches for Sub-Seabed Storage of carbon dioxide; DATE/TIME; DEPTH, water; Dissolved Oxygen Sensor, Sea-Bird, SBE 43; Event label; GeoB25104-1; GeoB25115-1; GeoB25132-1; LATITUDE; LONGITUDE; M183; M183_15-1; M183_32-1; M183_4-1; Meteor (1986); Mid-Atlantic Ridge; Oxygen; Oxygen saturation; Pressure, water; Research Mission of the German Marine Research Alliance (DAM): Marine carbon sinks in decarbonisation pathways; RIFLOR_1; Salinity; Station label; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 103173 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...