ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5)
  • Hindawi
  • Springer Science + Business Media
  • 2020-2024  (5)
  • 2010-2014
  • 1995-1999
  • 1975-1979
  • 2023  (5)
  • 1
    Publication Date: 2024-01-08
    Description: Harmful marine bacteria, such as Vibrio or Aeromonas species, typically exist at low abundance in ocean environments but represent a reservoir from which epidemics can arise. Particularly, Vibrio strains and their associated infections are on the rise globally due to increasing sea surface temperature representing an emergent threat for human and animal health also being responsible for large economic losses in the aquaculture industry worldwide. New technological approaches are needed to improve strategies targeting these pathogens. This review discusses new approaches based on improved sampling strategies and novel analytical methods offering increased accuracy, high throughput, and informativeness to study and detect microbial pathogens in the marine environment. Detecting and characterizing ultra-low-abundance pathogenic strains can serve as a critical tool in risk management and outbreak prevention of diseases caused by emerging marine pathogens.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Total alkalinity (TA) is a variable that reflects the acid buffering capacity of seawater, and is key to studies of the global carbon cycle. Daily and seasonal TA variations are poorly constrained due to limitations in observational techniques, and this hampers our understanding of the carbonate system. High quality and high temporal resolution TA observations are required to constrain the controlling factors on TA. Estuarine and coastal waters usually have low TA values and may experience enhanced remineralization of organic matter in response to processes such as eutrophication and terrestrial organic matter input. Therefore, these waters are considered vulnerable to acidification as a consequence of ongoing atmospheric anthropogenic carbon dioxide uptake. An In Situ Analyzer for seawater Total Alkalinity (ISA-TA) was deployed for the first time in low salinity, dynamic estuarine waters (Kiel Fjord, southwestern Baltic Sea). The ISA-TA and a range of additional sensors (for pH, pCO2, nitrate and temperature, salinity, dissolved oxygen) used to obtain ancillary data to interpret the TA variability, were deployed on a pontoon in the inner Kiel Fjord for approximately four months. Discrete samples (for TA, nutrients including NO3−, soluble reactive phosphorus (SRP) and H4SiO4, chlorophyll a) were collected regularly to validate the ISA-TA and to interpret the TA data. The effects on TA in the study area of nitrate uptake and of other processes such as precipitation, run-off and mixing of different waters were observed. The difference between the TA values measured with the ISA-TA and TA of discretely collected samples measured with the Gran titration method was −2.6 ± 0.9 μmol kg−1 (n = 106), demonstrating that the ISA-TA provides stable and accurate TA measurements in dynamic, low salinity (13.2–20.8), estuarine waters. The TA and ancillary data recorded by the sensor suite revealed that physical mixing was the main factor determining the variability in TA in Kiel Fjord during the study period.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-19
    Description: Biogeochemical markers in combination with bacterial community composition were studied at two contrasting stations at the Río Negro (RN) estuary to assess the outwelling hypothesis in the Argentinian Patagonia. Inorganic nutrients and dissolved organic matter were exported clearly during the last hours of the ebb at the station Wetland. Moreover, a considerable outwelling of polyunsaturated fatty acids (PUFA), particulates and microalgae was inferred by this combined approach. The exported 22:6(n-3) and 20:5(n-3) contributed very likely to sustain higher trophic levels in the coasts of the Southwest Atlantic. The stable isotopes did not evidence clearly the outwelling; nevertheless, the combination of δ13C with fatty acid bacterial markers indicated organic matter degradation in the sediments. The dominance of Desulfobacterales and Desulfuromonadales suggested sulphate reduction in the sediments, a key mechanism for nutrient outwelling in salt marshes. Marivivens and other Rhodobacterales (Alphaproteobacteria) in the suspended particulate matter were clear indicators of the nutrient outwelling. The colonization of particles according to the island biogeography theory was a good hypothesis to explain the lower bacterial biodiversity at the wetland. The copiotrophic conditions of the RN estuary and particularly at the wetland were deduced also by the dynamic of some Actinobacteria, Bacteroidia and Gammaproteobacteria. This high-resolution snapshot combining isotopic, lipid and bacterial markers offers key pioneer insights into biogeochemical and ecological processes of the RN estuary.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-27
    Description: The EU Center of Excellence for Exascale in Solid Earth (ChEESE) develops exascale transition capabilities in the domain of Solid Earth, an area of geophysics rich in computational challenges embracing different approaches to exascale (capability, capacity, and urgent computing). The first implementation phase of the project (ChEESE-1P; 2018–2022) addressed scientific and technical computational challenges in seismology, tsunami science, volcanology, and magnetohydrodynamics, in order to understand the phenomena, anticipate the impact of natural disasters, and contribute to risk management. The project initiated the optimisation of 10 community flagship codes for the upcoming exascale systems and implemented 12 Pilot Demonstrators that combine the flagship codes with dedicated workflows in order to address the underlying capability and capacity computational challenges. Pilot Demonstrators reaching more mature Technology Readiness Levels (TRLs) were further enabled in operational service environments on critical aspects of geohazards such as long-term and short-term probabilistic hazard assessment, urgent computing, and early warning and probabilistic forecasting. Partnership and service co-design with members of the project Industry and User Board (IUB) leveraged the uptake of results across multiple research institutions, academia, industry, and public governance bodies (e.g. civil protection agencies). This article summarises the implementation strategy and the results from ChEESE-1P, outlining also the underpinning concepts and the roadmap for the on-going second project implementation phase (ChEESE-2P; 2023–2026).
    Description: EU
    Description: Published
    Description: 47-61
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: HPC ; Physical models ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-23
    Description: Hydrogeological resources in the semiarid regions of Mexico support the economy and essential domestic activities of around 17 million people. However, adverse climatic conditions and overexploitation of aquifers affect the quantity and quality of the resource, added to problems of anthropogenic pollution and the salinity of water bodies. The Region Carbonífera aquifer represents the primary hydrogeological system in the most important coal-mining region in Mexico, located in the state of Coahuila. In this work, we present a complete dataset of 157 samples from surface and groundwaters sites have been used to characterizethe physicochemical and isotopic processes responsible for the composition of circulating waters, clarifying their origin, and to evaluate the water quality in terms of human consumption and irrigation use. The aquifer is mostly represented by Ca2+-Mg2+-SO42- and Ca2+-Mg2+-Cl- type waters, that supports salinization problems in 76% of the samples as well as sulfate excess. The origin of this chemical behavior seems to be the result of three main processes: 1) dissolution of soluble salts (gypsum, anhydrite and halite), 2) high surface evaporation under semiarid climate conditions, and 3) ionic and reverse ionic exchange. Processes 1 and 2 are also supported by the enrichment trends in the δ18O and δD signatures. For human consumption, 21% of the samples show high concentrations above the maximum permissible limits of the Official Mexican Standard (NOM-127-SSA1-1994) in total dissolved solids, Cl−, Na+, and SO42−. Additionally, 80% of the waters have some irrigation limitations due to excess sodicity or salinity. The worst quality waters for human or irrigation uses are located south of the aquifer in the municipalities of Juárez and Progreso. This study exhibits the complex hydric situation of the aquifer, raising awareness of the need to seek alternative sources, rational exploitation of resources, the use of crops that better adapt to these semiarid conditions, and intensifying hydrochemical monitoring in the region.
    Description: Published
    Description: 105307
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...