ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • IOP Publishing  (1)
  • Royal Meteorological Society  (1)
  • Frontiers
  • 2020-2024  (2)
  • 2015-2019
  • 2022  (2)
Collection
Publisher
Years
  • 2020-2024  (2)
  • 2015-2019
Year
  • 1
    Publication Date: 2024-02-07
    Description: An ensemble of idealized experiments with the simplified general circulation model PUMA is used to analyze the response to reduced surface friction, that is a strengthening of the eddy-driven jet, a weakening of the Eulerian mean overturning, and a suppression of baroclinic instability. The suppression of baroclinic instability is caused by an effect called the barotropic governor by which increased horizontal shear restricts the ability of baroclinic disturbances to convert available potential energy into kinetic energy. This governor effect ensures that the residual circulation and Eliassen–Palm flux (EP flux) divergence are largely invariant to the surface friction parameter despite the connection between surface friction, the Eulerian mean overturning, and the eddy-momentum flux. The suppression of instability leads to an increase in persistence measured by the period of peak variance on synoptic time-scales and a strengthened signal-to-noise ratio on seasonal time-scales. These findings suggest that the signal-to-noise paradox seen in the context of seasonal prediction can be caused by excess mechanical damping in atmospheric prediction systems inhibiting the barotropic governor effect.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The Greenland high (GL-high) coincides with a local center of action of the summer North Atlantic Oscillation and is known to have significant influence on Greenland ice sheet melting and summer Arctic sea ice. However, the mechanism behind the influence on regional Arctic sea ice is not yet clear. In this study, using reanalysis datasets and satellite observations, the influence of the GL-high in early summer on Arctic sea ice variability, and the mechanism behind it, are investigated. In response to an intensified GL-high, sea ice over the Beaufort Sea shows significant decline in both concentration and thickness from June through September. This decline in sea ice is primarily due to thermodynamic and mechanical redistribution processes. Firstly, the intensified GL-high increases subsidence over the Canadian Basin, leading to an increase in surface air temperature by adiabatic heating, and a substantial decrease in cloud cover and thus increased downward shortwave radiation. Secondly, the intensified GL-high increases easterly wind frequency and wind speed over the Beaufort Sea, pushing sea ice over the Canadian Basin away from the coastlines. Both processes contribute to an increase in open water areas, amplifying ice–albedo feedback and leading to sea ice decline. The mechanism identified here differs from previous studies that focused on northward moisture and heat transport and the associated increase in downward longwave radiation over the Arctic. The impact of the GL-high on the regional sea ice (also Arctic sea ice extent) can persist from June into fall, providing an important source for seasonal prediction of Arctic sea ice. The GL-high has an upward trend and reached a record high in 2012 that coincided with a record minimum summer Arctic sea ice extent, and has strong implications for summer Arctic sea ice changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...