ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-03-17
    Description: A high resolution study of calcareous nannofossils has been performed on samples from the Sapropel S1interval deposited in the North Ionian Sea, with the aim to assess the paleoenvironmental changes in the photic zone during this crucial interval in Mediterranean circulation. Calcareous nannofossil data have been integrated with planktonic foraminiferal data recently published from which the paleoclimatic curve has been constructed. Placoliths (namely Emiliania huxleyi) and Florisphaera profunda distributions, along with that of planktonic foraminifer Globigerinoides ruber white, evidence that, after a progressive weakening of surface water mixing, a deep chlorophyll maximum developed just prior to the sapropel deposition. We suggest that these changes took place as a response to enhanced precipitation conditions and riverine discharge as testified by increasing trend of reworked coccoliths and the occurrence of lower salinity taxon Braarudosphaera bigelowii. Calcareous nannofossils also point out that the oceanographic (water column stratification, reduced bottom water ventilation) and biogeochemical (increased primary production) processes that occurred during the S1 formation were particularly dominant during the earliest part of the older S1 warm phase (S1a). Our results support than some reventilation events of the shallow depth of studied site (665 m) occurred to some extent, particularly during the final phases of S1a. The distribution of holococcoliths, more abundant during the cold interruption phase S1i, seems confirm that the preservation of these tiny and delicate coccoliths, highly susceptible to dissolution, is enhanced under seafloor re-ventilation conditions. Finally, we tentatively suggest that preservation also plays a significant role in the distribution of the warm upper photic zone taxa, particularly during the warm S1b interval.
    Description: Published
    Description: 103599
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: Sapropel S1 ; Calcareous nannofossils ; Planktonic foraminifera ; North Ionian Sea ; Mediterranean ; Hydrosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-02
    Description: Ion temperature data recorded by Millstone Hill incoherent scatter radar (42.61 N, 288.51 E) over four full solar cycles (from 1970 to 2018) are analyzed to depict its climatological behavior in the range of altitudes between 100 and 550 km. The ion temperature dependencies on altitude, local time, month of the year, and solar activity level are studied through a climatological analysis based on binning and boxplot representation of statistical values. Binned observations of ion temperature are compared with International Reference Ionosphere (IRI) modeled values (IRI-2016 version). This comparison reveals several shortcomings in the IRI modeling of the ion temperature at ionosphere altitudes, in particular for the altitudinal, diurnal, seasonal, and solar activity description. The main finding of this study is that the overall IRI overestimation of the ion temperature can be probably ascribed to the long-term ionosphere cooling. Moreover, the study suggests that the IRI ion temperature model needs to implement the seasonal and solar activity dependence, and introduce a more refined diurnal description to allow multiple diurnal maxima seen in observations. The IRI ion temperature anchor point at 430 km is investigated in more detail to show how also a better description of the altitude dependence is desirable for modeling purposes. Some hints and clues are finally given to improve the IRI ion temperature model.
    Description: Published
    Description: 2186-2203
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-09-30
    Description: Mud volcanoes are rapidly-evolving geological phenomena characterized by the surface expulsion of sediments and fluids from over-pressurized underlying reservoirs. We investigate the Nirano Mud Volcano, Northern Italy, with seismic methods to better understand the dynamic evolution of the system and shed light on its subsurface structure. Our study allowed to detect and characterize three different types of high-frequency drumbeat signals that are present in the most active part of the mud volcano plumbing system. With a back-projection method based on the cross-correlation envelope of signals recorded at different station pairs, we can determine the source location of the drumbeats. These coincide with the location of V/H (vertical-to-horizontal) amplitude peaks obtained from an ambient vibration profile and resistivity anomalies identified in a previous study. We observe that the drumbeats are P-wave dominated signals, with characteristics similar to those found in magmatic settings, i.e. LPs (long-period signals). We suggest that such tremors originate from the migration of mud and gas inside the mud volcanic conduits. The source location, waveform and frequency content of the drumbeats evolve over time. We found that drumbeat occurrence is directly linked with morphological changes at surface.
    Description: Published
    Description: 107619
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jonell, T., Giosan, L., Clift, P., Carter, A., Bretschneider, L., Hathorne, E., Barbarano, M., Garzanti, E., Vezzoli, G., & Naing, T. No modern Irrawaddy River until the late Miocene-Pliocene. Earth and Planetary Science Letters, 584, (2022): 117516, https://doi.org/10.1016/j.epsl.2022.117516.
    Description: The deposits of large Asian rivers with unique drainage geometries have attracted considerable attention due to their explanatory power concerning tectonism, surface uplift and upstream drainage evolution. This study presents the first petrographic, heavy mineral, Nd and Sr isotope geochemistry, and detrital zircon geochronology results from the Holocene Irrawaddy megadelta alongside modern and ancient sedimentary provenance datasets to assess the late Neogene evolution of the Irrawaddy River. Contrary to models advocating a steady post-middle Miocene river, we reveal an evolution of the Irrawaddy River more compatible with regional evidence for kinematic reorganization in Myanmar during late-stage India-Asia collision. Quaternary sediments are remarkably consistent in terms of provenance but highlight significant decoupling amongst fine and coarse fraction 87Sr/86Sr and due to hydraulic sorting. Only well after the late Miocene do petrographic, heavy mineral, isotope geochemistry, and detrital zircon U–Pb results from the trunk Irrawaddy and its tributaries achieve modern-day signatures. The primary driver giving rise to the geometry and provenance signature of the modern Irrawaddy River was regional late Miocene (≤10 Ma) basin inversion coupled with uplift and cumulative displacement along the Sagaing Fault. Middle to late Miocene provenance signatures cannot be reconciled with modern river geometries, and thus require significant loss of headwaters feeding the Chindwin subbasin after ∼14 Ma and the northern Shwebo subbasin after ∼11 Ma. Large-scale reworking after ∼7 Ma is evidenced by modern Irrawaddy River provenance, by entrenchment of the nascent drainage through Plio-Pleistocene inversion structures, and in the transfer of significant sediment volumes to the Andaman Sea.
    Description: TNJ was supported in initial stages of this project by a Postdoctoral Research Fellowship at UQ and software support by LSU. LG thanks support from the Andrew W. Mellon Foundation via Woods Hole Oceanographic Institution. The Charles T. McCord chair at LSU funded coring and detrital zircon U–Pb geochronology essential to the study.
    Keywords: Provenance ; Sediment ; Irrawaddy ; Zircon ; Isotope geochemistry ; Petrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-09-01
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yang, X., Zhu, Z., Qiu, S., Kroeger, K. D., Zhu, Z., & Covington, S. Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series. Remote Sensing of Environment, 276, (2022): 113047, https://doi.org/10.1016/j.rse.2022.113047.
    Description: Coastal tidal wetlands are highly altered ecosystems exposed to substantial risk due to widespread and frequent land-use change coupled with sea-level rise, leading to disrupted hydrologic and ecologic functions and ultimately, significant reduction in climate resiliency. Knowing where and when the changes have occurred, and the nature of those changes, is important for coastal communities and natural resource management. Large-scale mapping of coastal tidal wetland changes is extremely difficult due to their inherent dynamic nature. To bridge this gap, we developed an automated algorithm for DEtection and Characterization of cOastal tiDal wEtlands change (DECODE) using dense Landsat time series. DECODE consists of three elements, including spectral break detection, land cover classification and change characterization. DECODE assembles all available Landsat observations and introduces a water level regressor for each pixel to flag the spectral breaks and estimate harmonic time-series models for the divided temporal segments. Each temporal segment is classified (e.g., vegetated wetlands, open water, and others – including unvegetated areas and uplands) based on the phenological characteristics and the synthetic surface reflectance values calculated from the harmonic model coefficients, as well as a generic rule-based classification system. This harmonic model-based approach has the advantage of not needing the acquisition of satellite images at optimal conditions (i.e., low tide status) to avoid underestimating coastal vegetation caused by the tidal fluctuation. At the same time, DECODE can also characterize different kinds of changes including land cover change and condition change (i.e., land cover modification without conversion). We used DECODE to track status of coastal tidal wetlands in the northeastern United States from 1986 to 2020. The overall accuracy of land cover classification and change detection is approximately 95.8% and 99.8%, respectively. The vegetated wetlands and open water were mapped with user's accuracy of 94.6% and 99.0%, and producer's accuracy of 98.1% and 93.5%, respectively. The cover change and condition change were mapped with user's accuracy of 68.0% and 80.0%, and producer's accuracy of 80.5% and 97.1%, respectively. Approximately 3283 km2 of the coastal landscape within our study area in the northeastern United States changed at least once (12% of the study area), and condition changes were the dominant change type (84.3%). Vegetated coastal tidal wetland decreased consistently (~2.6 km2 per year) in the past 35 years, largely due to conversion to open water in the context of sea-level rise.
    Description: This study was supported by USGS North Atlantic Coast Cooperative Ecosystem Studies Unit (CESU) Program for Detection and Characterization of Coastal Tidal Wetland Change (G19AC00354).
    Keywords: Coastal tidal wetland ; Landsat time series ; Change detection ; Classification ; Condition change ; Cover change ; Tide ; DECODE
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-19
    Description: Multiple initiatives have called for large-scale representative networks of marine protected areas (MPAs). MPAs should be ecologically representative to be effective, but in large, remote regions this can be difficult to quantify and assess. We present a novel bioregionalization for the Southern Ocean, which uses the modelled circumpolar habitat importance of 17 marine bird and mammal species. The habitat-use of these predators indicates biodiversity patterns that require representation in Southern Ocean conservation and management planning. In the predator habitat importance predictions, we identified 17 statistical clusters, falling into four larger groups. We characterized and contrasted these clusters based on their predator, prey and oceanographic characteristics. Under the existing Southern Ocean MPA network, some clusters fall short of 10 % representation, yet others meet or exceed these targets. Implementation of currently proposed MPAs can in some cases contribute to meeting even 30 % spatial coverage conservation targets. However, the effectiveness of mixed-use versus no-take MPAs should be taken into consideration, since some clusters are not adequately represented by no-take MPAs. These results, combined with previous studies in the Southern Ocean, can help inform the continued design, implementation, and evaluation of a representative system of MPAs for Southern Ocean conservation and management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-15
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lefebvre, K., Fachon, E., Bowers, E., Kimmel, D., Snyder, J., Stimmelmayr, R., Grebmeier, J., Kibler, S., Hardison, D., Anderson, D., Kulis, D., Murphy, J., Gann, J., Cooper, D., Eisner, L., Duffy-Anderson, J., Sheffield, G., Pickart, R., Mounsey, A., Willis, M. L., Stabeno, P., & Siddon, E. Paralytic shellfish toxins in Alaskan Arctic food webs during the anomalously warm ocean conditions of 2019 and estimated toxin doses to Pacific walruses and bowhead whales. Harmful Algae, 114, (2022): 102205, https://doi.org/10.1016/j.hal.2022.102205.
    Description: Climate change-related ocean warming and reduction in Arctic sea ice extent, duration and thickness increase the risk of toxic blooms of the dinoflagellate Alexandrium catenella in the Alaskan Arctic. This algal species produces neurotoxins that impact marine wildlife health and cause the human illness known as paralytic shellfish poisoning (PSP). This study reports Paralytic Shellfish Toxin (PST) concentrations quantified in Arctic food web samples that include phytoplankton, zooplankton, benthic clams, benthic worms, and pelagic fish collected throughout summer 2019 during anomalously warm ocean conditions. PSTs (saxitoxin equivalents, STX eq.) were detected in all trophic levels with concentrations above the seafood safety regulatory limit (80 μg STX eq. 100 g−1) in benthic clams collected offshore on the continental shelf in the Beaufort, Chukchi, and Bering Seas. Most notably, toxic benthic clams (Macoma calcarea) were found north of Saint Lawrence Island where Pacific walruses (Odobenus rosmarus) are known to forage for a variety of benthic species, including Macoma. Additionally, fecal samples collected from 13 walruses harvested for subsistence purposes near Saint Lawrence Island during March to May 2019, all contained detectable levels of STX, with fecal samples from two animals (78 and 72 μg STX eq. 100 g−1) near the seafood safety regulatory limit. In contrast, 64% of fecal samples from zooplankton-feeding bowhead whales (n = 9) harvested between March and September 2019 in coastal waters of the Beaufort Sea near Utqiaġvik (formerly Barrow) and Kaktovik were toxin-positive, and those levels were significantly lower than in walruses (max bowhead 8.5 μg STX eq. 100 g−1). This was consistent with the lower concentrations of PSTs found in regional zooplankton prey. Maximum ecologically-relevant daily toxin doses to walruses feeding on clams and bowhead whales feeding on zooplankton were estimated to be 21.5 and 0.7 μg STX eq. kg body weight−1 day−1, respectively, suggesting that walruses had higher PST exposures than bowhead whales. Average and maximum STX doses in walruses were in the range reported previously to cause illness and/or death in humans and humpback whales, while bowhead whale doses were well below those levels. These findings raise concerns regarding potential increases in PST/STX exposure risks and health impacts to Arctic marine mammals as ocean warming and sea ice reduction continue.
    Description: This research was funded by ECOHAB project number NA20NOS4780195 (to KAL and DMA), the North Pacific Research Board (NPRB Arctic Integrated Ecosystem Research Program), the Bureau of Ocean and Energy Management (BOEM), the National Science Foundation (NSF) Office of Polar Programs (OPP-1823002 and OPP-1733564), the National Oceanic and Atmospheric Administration (NOAA) Arctic Research program (through the Cooperative Institute for the North Atlantic Region [CINAR; Grants NA14OAR4320158 and NA19OAR4320074] and the Cooperative Institute for the North Atlantic Region NOAA CINAR Grant # 22309.07 UMCES [to JG at the University of Maryland Center for Environmental Science]), the Alaska Sustainable Salmon Fund project #51002, the Alaska Department of Fish and Game, the North Slope Borough Department of Wildlife management, the U.S. National Park Service Shared Beringian Heritage Program grant # P21AC12214-00, and NOAA's Northwest Fisheries Science Center (NWFSC) and Alaska Fisheries Science Center (AFSC). We also thank the RACE Groundfish and Shellfish Assessment Programs of the NOAA Fisheries AFSC and the crew of the F/V Knight for their assistance in securing additional benthic biological samples used in this study. Collection of harvested bowhead whale samples was conducted under NMFS Permit #21386. Collection of harvested walrus samples was conducted under US Fish and Wildlife permit #MA-041309-5. This is ECOHAB publication #1000.
    Keywords: harmful algal blooms ; algal toxins ; trophic transfer ; saxitoxin ; paralytic shellfish poisoning ; marine mammals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pirotta, E., Thomas, L., Costa, D., Hall, A., Harris, C., Harwood, J., Kraus, S., Miller, P., Moore, M., Photopoulou, T., Rolland, R., Schwacke, L., Simmons, S., Southall, B., & Tyack, P. Understanding the combined effects of multiple stressors: a new perspective on a longstanding challenge. Science of The Total Environment, 821, (2022): 153322, https://doi.org/10.1016/j.scitotenv.2022.153322.
    Description: Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.
    Description: This work was supported by the Office of Naval Research [grant numbers N000142012697, N000142112096]; and the Strategic Environmental Research and Development Program [grant numbers RC20-1097, RC20-7188, RC21-3091].
    Keywords: Adaptive management ; Climate change ; Combined effects ; Mechanistic modelling ; Multiple stressors ; Population consequences
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-22
    Description: Phytoplankton form the base of the pelagic food web in inland waters. Unlike rooted plants with access to nutrients in the sediment, phytoplankton depend on the open water as their sole direct source of minerals. Phytoplankton comprise cyanobacteria and phylogenetically diverse eukaryotic algae that convert light energy and mineral nutrients into organic matter. Many species also exploit the elements and energy within dissolved organic compounds and particles produced in the catchment or within the water. Here, we describe the nutrient requirements of phytoplankton, their different modes of nutrition, the mechanisms they employ to acquire nutrients and the ecological consequences of their varying ability to exploit an often scarce and spatially and temporally variable resource. When nutrients are abundant, often as a result of human disruption of nutrient cycles, phytoplankton productivity, and often biomass, increases to the point that it causes a range of ecological consequences that reduce the value of the water resource for mankind.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...