ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estapa, M., Buesseler, K., Durkin, C. A., Omand, M., Benitez-Nelson, C. R., Roca-Marti, M., Breves, E., Kelly, R. P., & Pike, S. Biogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa. Elementa: Science of the Anthropocene, 9(1), (2021): 00122, https://doi.org/10.1525/elementa.2020.00122.
    Description: Comprehensive field observations characterizing the biological carbon pump (BCP) provide the foundation needed to constrain mechanistic models of downward particulate organic carbon (POC) flux in the ocean. Sediment traps were deployed three times during the EXport Processes in the Ocean from RemoTe Sensing campaign at Ocean Station Papa in August–September 2018. We propose a new method to correct sediment trap sample contamination by zooplankton “swimmers.” We consider the advantages of polyacrylamide gel collectors to constrain swimmer influence and estimate the magnitude of possible trap biases. Measured sediment trap fluxes of thorium-234 are compared to water column measurements to assess trap performance and estimate the possible magnitude of fluxes by vertically migrating zooplankton that bypassed traps. We found generally low fluxes of sinking POC (1.38 ± 0.77 mmol C m–2 d–1 at 100 m, n = 9) that included high and variable contributions by rare, large particles. Sinking particle sizes generally decreased between 100 and 335 m. Measured 234Th fluxes were smaller than water column 234Th fluxes by a factor of approximately 3. Much of this difference was consistent with trap undersampling of both small (〈32 μm) and rare, large particles (〉1 mm) and with zooplankton active migrant fluxes. The fraction of net primary production exported below the euphotic zone (0.1% light level; Ez-ratio = 0.10 ± 0.06; ratio uncertainties are propagated from measurements with n = 7–9) was consistent with prior, late summer studies at Station P, as was the fraction of material exported to 100 m below the base of the euphotic zone (T100, 0.55 ± 0.35). While both the Ez-ratio and T100 parameters varied weekly, their product, which we interpret as overall BCP efficiency, was remarkably stable (0.055 ± 0.010), suggesting a tight coupling between production and recycling at Station P.
    Description: The authors would like to acknowledge funding support from the NASA EXPORTS program (Award 80NSSC17K0662) for all sediment trap data presented here. Net primary production data collection was supported by EXPORTS (Award 80NSSC17K568) to Oregon State University. Thorium data collection was supported by EXPORTS (Award 80NSSC17K0555) to KB, CRBN, and L. Resplandy.
    Keywords: Biological carbon pump ; Ocean Station Papa ; Sediment traps ; Carbon flux ; Particle size distribution ; Swimmers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-31
    Description: Dataset: Sediment trap sinking particle data
    Description: This dataset includes general measurements for sediment trap casts at 5 stations along a transect between Hawaii and Alaska. Data was collected in August 2017 onboard R/V Kilo Moana cruise KM1712. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/860424
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1220600, NSF Division of Ocean Sciences (NSF OCE) OCE-1220302
    Keywords: North Pacific ; Particulate inorganic carbon ; Particulate organic carbon ; Sediment traps ; Sinking flux
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(1), (2021): e2020JC016802, https://doi.org/10.1029/2020JC016802.
    Description: The neodymium isotopic composition of the detrital (lithogenic) fraction (εNd‐detrital) of surface sediments and sinking particles was examined to constrain transport trajectories associated with hemipelagic sedimentation on the northwest Atlantic margin. The provenance of resuspended sediments and modes of lateral transport in the water column were of particular interest given the energetic hydrodynamic regime that sustains bottom and intermediate nepheloid layers over the margin. A large across‐margin gradient of ∼5 εNd units was observed for surface sediments, implying strong contrasts in sediment provenance, with εNd‐detrital values on the lower slope similar to those of “upstream regions” (Scotian margin) under the influence of the Deep Western Boundary Current (DWBC). Sinking particles collected at three depths at a site (total water depth, ∼3,000 m) on the New England margin within the core of the DWBC exhibited a similarly large range in εNd‐detrital values. The εNd‐detrital values of particles intercepted at intermediate water depths (1,000 and 2,000 m) were similar to each other but significantly higher than those at 3,000 m (∼50 m above the seafloor). These observations suggest that lithogenic material accumulating in the upper two traps was primarily advected in intermediate nepheloid layers emanating from the adjacent shelf, while that at 3,000 m is strongly influenced by sediment resuspension and along‐margin, southward lateral transport within the bottom nepheloid layer via entrainment in the DWBC. Our results highlight the importance of both along‐ and across‐margin sediment transport as vectors for lithogenic material and associated organic carbon transport.
    Description: This research was funded by the NSF Ocean Sciences Chemical Oceanography program (OCE‐0425677; OCE‐0851350). JH was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2020R1A2C1008378).
    Description: 2021-06-04
    Keywords: Hemipelagic sedimentation ; Lateral particle transport ; Neodymium isotopes ; Nepheloid layers ; New England margin ; Sediment traps
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...