ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Farrell, U. C., Samawi, R., Anjanappa, S., Klykov, R., Adeboye, O. O., Agic, H., Ahm, A.-S. C., Boag, T. H., Bowyer, F., Brocks, J. J., Brunoir, T. N., Canfield, D. E., Chen, X., Cheng, M., Clarkson, M. O., Cole, D. B., Cordie, D. R., Crockford, P. W., Cui, H., Dahl, T. W., Mouro, L. D., Dewing, K., Dornbos, S. Q., Drabon, N., Dumoulin, J. A., Emmings, J. F., Endriga, C. R., Fraser, T. A., Gaines, R. R., Gaschnig, R. M., Gibson, T. M., Gilleaudeau, G. J., Gill, B. C., Goldberg, K., Guilbaud, R., Halverson, G. P., Hammarlund, E. U., Hantsoo, K. G., Henderson, M. A., Hodgskiss, M. S. W., Horner, Tristan J., Husson, J. M., Johnson, B., Kabanov, P., Brenhin K. C., Kimmig, J., Kipp, M. A., Knoll, A. H., Kreitsmann, T., Kunzmann, M., Kurzweil, F., LeRoy, M. A., Li, C., Lipp, A. G., Loydell, D. K., Lu, X., Macdonald, F. A., Magnall, J. M., Mänd, K., Mehra, A., Melchin, M. J., Miller, A. J., Mills, N. T., Mwinde, C. N., O'Connell, B., Och, L. M., Ossa Ossa, F., Pagès, A., Paiste, K., Partin, C. A., Peters, S. E., Petrov, P., Playter, T. L., Plaza-Torres, S., Porter, Susannah M., Poulton, S. W., Pruss, S. B., Richoz, S., Ritzer, S. R., Rooney, A. D., Sahoo, S. K., Schoepfer, S. D., Sclafani, J. A., Shen, Y., Shorttle, O., Slotznick, S. P., Smith, E. F., Spinks, S., Stockey, R. G., Strauss, J. V., Stüeken, E. E., Tecklenburg, S., Thomson, D., Tosca, N. J., Uhlein, G. J., Vizcaíno, M. N., Wang, H., White, T., Wilby, P. R., Woltz, C. R., Wood, R. A., Xiang, L., Yurchenko, I. A., Zhang, T., Planavsky, N. J., Lau, K. V., Johnston, D. T., Sperling, E. A., The Sedimentary Geochemistry and Paleoenvironments Project. Geobiology. 00, (2021): 1– 12,https://doi.org/10.1111/gbi.12462.
    Description: Geobiology explores how Earth's system has changed over the course of geologic history and how living organisms on this planet are impacted by or are indeed causing these changes. For decades, geologists, paleontologists, and geochemists have generated data to investigate these topics. Foundational efforts in sedimentary geochemistry utilized spreadsheets for data storage and analysis, suitable for several thousand samples, but not practical or scalable for larger, more complex datasets. As results have accumulated, researchers have increasingly gravitated toward larger compilations and statistical tools. New data frameworks have become necessary to handle larger sample sets and encourage more sophisticated or even standardized statistical analyses. In this paper, we describe the Sedimentary Geochemistry and Paleoenvironments Project (SGP; Figure 1), which is an open, community-oriented, database-driven research consortium. The goals of SGP are to (1) create a relational database tailored to the needs of the deep-time (millions to billions of years) sedimentary geochemical research community, including assembling and curating published and associated unpublished data; (2) create a website where data can be retrieved in a flexible way; and (3) build a collaborative consortium where researchers are incentivized to contribute data by giving them priority access and the opportunity to work on exciting questions in group papers. Finally, and more idealistically, the goal was to establish a culture of modern data management and data analysis in sedimentary geochemistry. Relative to many other fields, the main emphasis in our field has been on instrument measurement of sedimentary geochemical data rather than data analysis (compared with fields like ecology, for instance, where the post-experiment ANOVA (analysis of variance) is customary). Thus, the longer-term goal was to build a collaborative environment where geobiologists and geologists can work and learn together to assess changes in geochemical signatures through Earth history.
    Description: We thank the donors of The American Chemical Society Petroleum Research Fund for partial support of SGP website development (61017-ND2). EAS is funded by National Science Foundation grant (NSF) EAR-1922966. BGS authors (JE, PW) publish with permission of the Executive Director of the British Geological Survey, UKRI.
    Keywords: Consortium ; Database ; Earth history ; Geochemistry ; Website
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-04
    Description: We present a novel method to estimate dynamic ice loss of Greenland's three largest outlet glaciers: Jakobshavn Isbræ, Kangerlussuaq Glacier, and Helheim Glacier. We use Global Navigation Satellite System (GNSS) stations attached to bedrock to measure elastic displacements of the solid Earth caused by dynamic thinning near the glacier terminus. When we compare our results with discharge, we find a time lag between glacier speedup/slowdown and onset of dynamic thinning/thickening. Our results show that dynamic thinning/thickening on Jakobshavn Isbræ occurs 0.87 ± 0.07 years before speedup/slowdown. This implies that using GNSS time series we are able to predict speedup/slowdown of Jakobshavn Isbræ by up to 10.4 months. For Kangerlussuaq Glacier the lag between thinning/thickening and speedup/slowdown is 0.37 ± 0.17 years (4.4 months). Our methodology and results could be important for studies that attempt to model and understand mechanisms controlling short-term dynamic fluctuations of outlet glaciers in Greenland.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Teleseismic earthquake wavefields observed on the Ross Ice Shelf. Journal of Glaciology, 67(261), (2021): 58-74, https://doi.org/10.1017/jog.2020.83.
    Description: Observations of teleseismic earthquakes using broadband seismometers on the Ross Ice Shelf (RIS) must contend with environmental and structural processes that do not exist for land-sited seismometers. Important considerations are: (1) a broadband, multi-mode ambient wavefield excited by ocean gravity wave interactions with the ice shelf; (2) body wave reverberations produced by seismic impedance contrasts at the ice/water and water/seafloor interfaces and (3) decoupling of the solid Earth horizontal wavefield by the sub-shelf water column. We analyze seasonal and geographic variations in signal-to-noise ratios for teleseismic P-wave (0.5–2.0 s), S-wave (10–15 s) and surface wave (13–25 s) arrivals relative to the RIS noise field. We use ice and water layer reverberations generated by teleseismic P-waves to accurately estimate the sub-station thicknesses of these layers. We present observations consistent with the theoretically predicted transition of the water column from compressible to incompressible mechanics, relevant for vertically incident solid Earth waves with periods longer than 3 s. Finally, we observe symmetric-mode Lamb waves generated by teleseismic S-waves incident on the grounding zones. Despite their complexity, we conclude that teleseismic coda can be utilized for passive imaging of sub-shelf Earth structure, although longer deployments relative to conventional land-sited seismometers will be necessary to acquire adequate data.
    Description: This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151, 1246416 and OPP-1744852 and 1744856.
    Keywords: Glacier geophysics ; Ice shelves ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jin, D., Hoagland, P., & Ashton, A. D. Risk averse choices of managed beach widths under environmental uncertainty. Natural Resource Modeling, (2021): e12324, https://doi.org/10.1111/nrm.12324.
    Description: Applying a theoretical geo-economic approach, we examined key factors affecting decisions about the choice of beach width when eroded coastal beaches are being nourished (i.e., when fill is placed to widen a beach). Within this geo-economic framework, optimal beach width is positively related to its values for hazard protection and recreation and negatively related to nourishment costs and the discount rate. Using a dynamic modeling framework, we investigated the time paths of beach width and nourishment that maximized net present value under an accelerating sea level. We then analyzed how environmental uncertainty about expected future beach width, arising from natural shoreline dynamics, intermittent large storms, or sea-level rise, leads to economic choices favoring narrower beaches. Risk aversion can affect a coastal property owner's choice of beach width in contradictory ways: the expected benefits of hazard protection must be balanced against the expected costs of repeated nourishment actions.
    Description: Support for this study was provided by NSF Grant No. ARG 1518503, WHOI Sea Grant (NOAA Award Number: NA18OAR4170104), and the J. Seward Johnson Fund in Support of the Marine Policy Center.
    Keywords: Beach nourishment ; Beach width ; Coastal protection ; Risk management ; Shoreline change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Caruso, F., Hickmott, L., Warren, J. D., Segre, P., Chiang, G., Bahamonde, P., Español-Jiménez, S., Li, S., & Bocconcelli, A. Diel differences in blue whale (Balaenoptera musculus) dive behavior increase nighttime risk of ship strikes in northern Chilean Patagonia. Integrative Zoology, (2020): 1-18, doi:10.1111/1749-4877.12501.
    Description: The northern Chilean Patagonia region is a key feeding ground and a nursing habitat in the southern hemisphere for blue whales (Balaenoptera musculus). From 2014 to 2019, during 6 separate research cruises, the dive behavior of 28 individual blue whales was investigated using bio‐logging tags (DTAGs), generating ≈190 h of data. Whales dove to significantly greater depths during the day compared to nighttime (day: 32.6 ± 18.7 m; night: 6.2 ± 2.7 m; P 〈 0.01). During the night, most time was spent close to the surface (86% ± 9.4%; P 〈 0.01) and at depths of less than 12 m. From 2016 to 2019, active acoustics (scientific echosounders) were used to record prey (euphausiids) density and distribution simultaneously with whale diving data. Tagged whales appeared to perform dives relative to the vertical migration of prey during the day. The association between diurnal prey migration and shallow nighttime dive behavior suggests that blue whales are at increased risk of ship collisions during periods of darkness since the estimated maximum ship draft of vessels operating in the region is also ≈12 m. In recent decades, northern Chilean Patagonia has seen a large increase in marine traffic due to a boom in salmon aquaculture and the passenger ship industry. Vessel strike risks for large whales are likely underestimated in this region. Results reported in this study may be valuable for policy and mitigation decisions regarding conservation of the endangered blue whale.
    Description: This work was conducted under Chilean research permit PINV 38–2014 Ballena Azul, Golfo Corcovado, from the Ministerio de Economia, Fomento y Turismo, Subsecreteria de Pesca y Acuicultura. We would like to thank the crews of the vessels Centinela, Khronos and Solidaridad for their involvement in the fieldwork. Special thanks to Rafaela Landea‐Briones, Gloria Howes, Esteban Tapia Brunet, Pepe Montt, Thomas Montt, and Daniel Casado for helping and welcoming us in Patagonia. Thanks to MERI Foundation and their students Carlos Cantergiani, Andrea Hirmas and Elvira Vergara for their support and contributions to field efforts. We extend our gratitude to our collaborators Laela Sayigh, Michael Moore, Daniel Zitterbart, Frants Jensen, Aran Mooney, John Durban, Jeremy Goldbogen, and Dave Cade. Thanks to WHOI for financial and technical support. The data analysis and paper writing was financially supported by the National Key Research and Development Program of China (Grant number 2016YFC0300802); the biodiversity investigation, observation and assessment program (2019‐2023) of the Ministry of Ecology and Environment of China; and Indian Ocean Ninety‐east Ridge Ecosystem and Marine Environment Monitoring and Protection, supported by the China Ocean Mineral Resources R&D Association (no. DY135‐E2‐4). Additionally, FC thanks the President's International Fellowship Initiative (PIFI) of the Chinese Academy of Sciences.
    Keywords: Bio‐logging tags ; Blue whale ; Diving profile ; Ocean conservation ; Prey distribution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tison, J.-L., Maksym, T., Fraser, A. D., Corkill, M., Kimura, N., Nosaka, Y., Nomura, D., Vancoppenolle, M., Ackley, S., Stammerjohn, S., Wauthy, S., Van der Linden, F., Carnat, G., Sapart, C., de Jong, J., Fripiat, F., & Delille, B. Physical and biological properties of early winter Antarctic sea ice in the Ross Sea. Annals of Glaciology, 61(83), (2020): 241–259, https://doi.org/10.1017/aog.2020.43.
    Description: This work presents the results of physical and biological investigations at 27 biogeochemical stations of early winter sea ice in the Ross Sea during the 2017 PIPERS cruise. Only two similar cruises occurred in the past, in 1995 and 1998. The year 2017 was a specific year, in that ice growth in the Central Ross Sea was considerably delayed, compared to previous years. These conditions resulted in lower ice thicknesses and Chl-a burdens, as compared to those observed during the previous cruises. It also resulted in a different structure of the sympagic algal community, unusually dominated by Phaeocystis rather than diatoms. Compared to autumn-winter sea ice in the Weddell Sea (AWECS cruise), the 2017 Ross Sea pack ice displayed similar thickness distribution, but much lower snow cover and therefore nearly no flooding conditions. It is shown that contrasted dynamics of autumnal-winter sea-ice growth between the Weddell Sea and the Ross Sea impacted the development of the sympagic community. Mean/median ice Chl-a concentrations were 3–5 times lower at PIPERS, and the community status there appeared to be more mature (decaying?), based on Phaeopigments/Chl-a ratios. These contrasts are discussed in the light of temporal and spatial differences between the two cruises.
    Description: S. Stammerjohn was supported by the PIPERS and LTER Programs of the U.S. National Science Foundation, ANT-1341606 (S. Stammerjohn and J. Cassano, U Colorado) and ANT-0823101 (H. Ducklow, LDEO/Columbia University), respectively. Steve Ackley (UTSA) was supported by the PIPERS program of the U.S. National Science Foundation ANT-1341717 and by NASA Grant 80NSSC19M0194 to the Center for Adv. Meas. in Extreme Environments at UTSA.Ted Maksym (WHOI) was supported by the PIPERS program of the U.S. National Science Foundation ANT-1341513. This research was supported by the Belgian F.R.S-FNRS (project ISOGGAP and IODIne, contract T.0268.16 and J.0262.17, respectively). Fanny Van der Linden, Sarah Wauthy, Gauthier Carnat, Célia Sapart and Bruno Delille are PhD students, postdoctoral researchers and research associate, respectively, of the Belgian F.R.S.-FNRS. This work was also supported by the Australian Government's Cooperative Research Centre program through the Antarctic Climate & Ecosystems Cooperative Research Centre, and by the Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership (Project ID SR140300001). Daiki Nomura was supported by grants from the Japan Society for the Promotion of Science (#17H04715) and the National Institute for Polar Research through Project Research KP-303 (ROBOTICA) and #28-14.
    Keywords: Antarctic glaciology ; biogeochemistry ; sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Oceans, Wiley, 126(12), pp. e2021JC017633, ISSN: 0148-0227
    Publication Date: 2022-06-29
    Description: The transient climate response (TCR) is 20% higher in the Alfred Wegener Institute Climate Model (AWI-CM) compared to the Max Planck Institute Earth System Model (MPI-ESM) whereas the equilibrium climate sensitivity (ECS) is by up to 10% higher in AWI-CM. These results are largely independent of the two considered model resolutions for each model. The two coupled CMIP6 models share the same atmosphere-land component ECHAM6.3 developed at the Max Planck Institute for Meteorology (MPI-M). However, ECHAM6.3 is coupled to two different ocean models, namely the MPIOM sea ice-ocean model developed at MPI-M and the FESOM sea ice-ocean model developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). A reason for the different TCR is related to ocean heat uptake in response to greenhouse gas forcing. Specifically, AWI-CM simulations show stronger surface heating than MPI-ESM simulations while the latter accumulate more heat in the deeper ocean. The vertically integrated ocean heat content is increasing slower in AWI-CM model configurations compared to MPI-ESM model configurations in the high latitudes. Weaker vertical mixing in AWI-CM model configurations compared to MPI-ESM model configurations seems to be key for these differences. The strongest difference in vertical ocean mixing occurs inside the Weddell and Ross Gyres and the northern North Atlantic. Over the North Atlantic, these differences materialize in a lack of a warming hole in AWI-CM model configurations and the presence of a warming hole in MPI-ESM model configurations. All these differences occur largely independent of the considered model resolutions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-22
    Description: Thirteen samples of mortar collected from different masonry structures of the Curia of Pompey the Great and from three mixtilinear basins located within the Sacred Area of Largo Argentina were studied. Despite the use of the same volcanic deposit, known as "Pozzolane Rosse", to produce the fine aggregate in all these mortars, it was possible to highlight some distinctive features through the combination of geochemical analyses on selected trace elements and petrographic analysis under an optical microscope, allowing us to distinguish among the three groups of mortars. These types of mortars reflect a perfect coincidence between the diversity of the volcanic materials used and the different construction phases identified and documented by the analysis of the stratigraphic units: a first construction phase of Pompeian age, a second one of Augustan age and, finally, one of the medieval period. Furthermore, it was possible to ascertain two phases of construction of the basins, the second coeval with the interventions of the Augustan period. Finally, this study increases the knowledge on the methods of exploitation and selection of volcanic materials used to produce mortars in Roman times, identifying additional elements useful to establish their origin and chronology of use.
    Description: Published
    Description: 597-610
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-10
    Description: The bacterial communities of Caulerpa lentillifera were studied during an outbreak of an unknown disease in a sea grape farm from Vietnam. Clear differences between healthy and diseased cases were observed at the order, genus, and Operational Taxonomic Unit (OTU) level. A richer diversity was detected in the diseased thalli of C. lentillifera, as well as the dominance of the orders Flavobacteriales (phylum Bacteroidetes) and Phycisphaerales (Planctomycetes). Aquibacter, Winogradskyella, and other OTUs of the family Flavobacteriaceae were hypothesized as detrimental bacteria, this family comprises some well-known seaweed pathogens. Phycisphaera together with other Planctomycetes and Woeseia were probably saprophytes of C. lentillifera. The Rhodobacteraceae and Rhodovulum dominated the bacterial community composition of healthy C. lentillifera. The likely beneficial role of Bradyrhizobium, Paracoccus, and Brevundimonas strains on nutrient cycling and phytohormone production was discussed. The bleaching of diseased C. lentillifera might not only be associated with pathogens but also with an oxidative response. This study offers pioneering insights on the co-occurrence of C. lentillifera-attached bacteria, potential detrimental or beneficial microbes, and a baseline for understanding the C. lentillifera holobiont. Further applied and basic research is urgently needed on C. lentillifera microbiome, shotgun metagenomic, metatranscriptomic, and metabolomic studies as well as bioactivity assays are recommended.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sequeira, A. M. M., O'Toole, M., Keates, T. R., McDonnell, L. H., Braun, C. D., Hoenner, X., Jaine, F. R. A., Jonsen, I. D., Newman, P., Pye, J., Bograd, S. J., Hays, G. C., Hazen, E. L., Holland, M., Tsontos, V. M., Blight, C., Cagnacci, F., Davidson, S. C., Dettki, H., Duarte, C. M., Dunn, D. C., Eguiluz, V. M., Fedak, M., Gleiss, A. C., Hammerschlag, N., Hindell, M. A., Holland, K., Janekovic, I., McKinzie, M. K., Muelbert, M. M. C., Pattiaratchi, C., Rutz, C., Sims, D. W., Simmons, S. E., Townsend, B., Whoriskey, F., Woodward, B., Costa, D. P., Heupel, M. R., McMahon, C. R., Harcourt, R., & Weise, M. A standardisation framework for bio-logging data to advance ecological research and conservation. Methods in Ecology and Evolution, 12, (2021): 996–1007, https://doi.org/10.1111/2041-210X.13593.
    Description: 1. Bio-logging data obtained by tagging animals are key to addressing global conservation challenges. However, the many thousands of existing bio-logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms, slowing down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability and effective translation of bio-logging data into research and management recommendations. 2. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (a) decoded raw data, (b) curated data, (c) interpolated data and (d) gridded data. Our framework allows for integration of simple tabular arrays (e.g. csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy-of-use, rightful attribution (ensuring data providers keep ownership through the entire process) and data preservation security. 3. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. 4. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter-governmental assessments (e.g. the World Ocean Assessment), and will provide a starting point for broader efforts to establish interoperable bio-logging data formats across all fields in animal ecology.
    Description: We are thankful to ONR and UWA OI for funding the workshop, and to ARC for DP210103091. A.M.M.S. was funded by a 2020 Pew Fellowship in Marine Conservation, and also supported by AIMS. C.R. was the recipient of a Radcliffe Fellowship at the Radcliffe Institute for Advanced Study, Harvard University.
    Keywords: bio-logging template ; data accessibility and interoperability ; data standards ; metadata templates ; movement ecology ; sensors ; telemetry ; tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...