ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-08
    Description: The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions. © 2021, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Soil physicochemical properties
    Description: Nine coastal wetland soil cores (150cm) collected in June 2018 from Barataria Bay, Louisiana were analyzed for biogeochemical properties, organic matter fractionation, and stable isotope signatures For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/840246
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1635837
    Keywords: Soil organic matter ; Coastal wetlands ; Sea level rise ; Wetland submergence
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Nutrients
    Description: Nine coastal wetland soil cores (150cm) that were collected in June 2018 from Barataria Bay, Louisiana were analyzed for nutrients For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/840293
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1635837
    Keywords: Nutrients ; Barataria Bay ; Coastal wetlands ; Wetland submergence ; Sea level rise
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-31
    Description: Dataset: Core Fluorescent Indicators, March and November 2017
    Description: Core samples were collected from three different transects in South Wilkinson Bay in the Northeast portion of Barataria Bay, Louisiana in March and November, 2018. Samples were then analyzed for fluorescence and other physical indicators. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/859759
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1636052
    Keywords: Fluorescence ; Coastal wetlands ; Carbon ; Subsidence
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-31
    Description: Dataset: Core Fluorescent Indicators Sept 2018
    Description: Triplicate core samples were collected at three different distances at sites on the North, East, South, and West sides of a protected island in South Wilkinson Bay in the Northeast portion of Barataria Bay, Louisiana in September 2018. Samples were then analyzed for fluorescence and other physical indicators. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/855277
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1636052
    Keywords: Fluorescence ; Coastal wetlands ; Carbon ; Subsidence
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Gene Abundance
    Description: Nine coastal wetland soil cores (150cm) collected in June 2018 from Barataria Bay, Louisiana were analyzed for microbial gene abundance For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/840278
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1635837
    Keywords: Gene abudance ; Microbial activity ; Barataria Bay ; Wetland submergence ; Coastal wetlands ; Soil organic matter
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(6), (2020): E897-E904, doi:10.1175/BAMS-D-19-0047.1.
    Description: Over the past 15 years, numerous studies have suggested that the sinking branches of Earth’s Hadley circulation and the associated subtropical dry zones have shifted poleward over the late twentieth century and early twenty-first century. Early estimates of this tropical widening from satellite observations and reanalyses varied from 0.25° to 3° latitude per decade, while estimates from global climate models show widening at the lower end of the observed range. In 2016, two working groups, the U.S. Climate Variability and Predictability (CLIVAR) working group on the Changing Width of the Tropical Belt and the International Space Science Institute (ISSI) Tropical Width Diagnostics Intercomparison Project, were formed to synthesize current understanding of the magnitude, causes, and impacts of the recent tropical widening evident in observations. These working groups concluded that the large rates of observed tropical widening noted by earlier studies resulted from their use of metrics that poorly capture changes in the Hadley circulation, or from the use of reanalyses that contained spurious trends. Accounting for these issues reduces the range of observed expansion rates to 0.25°–0.5° latitude decade‒1—within the range from model simulations. Models indicate that most of the recent Northern Hemisphere tropical widening is consistent with natural variability, whereas increasing greenhouse gases and decreasing stratospheric ozone likely played an important role in Southern Hemisphere widening. Whatever the cause or rate of expansion, understanding the regional impacts of tropical widening requires additional work, as different forcings can produce different regional patterns of widening.
    Description: We thank U.S. CLIVAR and ISSI for funding the two working groups. We thank all members of the working groups for helpful discussions, and the U.S. CLIVAR and ISSI offices and their sponsoring agencies (NASA, NOAA, NSF, DOE, ESA, Swiss Confederation, Swiss Academy of Sciences, and University of Bern) for supporting these groups and activities.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Blevins, M. G., Allen, H. L., Colson, B. C., Cook, A.-M., Greenbaum, A. Z., Hemami, S. S., Hollmann, J., Kim, E., LaRocca, A. A., Markoski, K. A., Miraglia, P., Mott, V. L., Robberson, W. M., Santos, J. A., Sprachman, M. M., Swierk, P., Tate, S., Witinski, M. F., Kratchman, L. B., & Michel, A. P. M. Field-portable microplastic sensing in aqueous environments: a perspective on emerging techniques. Sensors, 21(10), (2021): 3532, https://doi.org/10.3390/s21103532.
    Description: Microplastics (MPs) have been found in aqueous environments ranging from rural ponds and lakes to the deep ocean. Despite the ubiquity of MPs, our ability to characterize MPs in the environment is limited by the lack of technologies for rapidly and accurately identifying and quantifying MPs. Although standards exist for MP sample collection and preparation, methods of MP analysis vary considerably and produce data with a broad range of data content and quality. The need for extensive analysis-specific sample preparation in current technology approaches has hindered the emergence of a single technique which can operate on aqueous samples in the field, rather than on dried laboratory preparations. In this perspective, we consider MP measurement technologies with a focus on both their eventual field-deployability and their respective data products (e.g., MP particle count, size, and/or polymer type). We present preliminary demonstrations of several prospective MP measurement techniques, with an eye towards developing a solution or solutions that can transition from the laboratory to the field. Specifically, experimental results are presented from multiple prototype systems that measure various physical properties of MPs: pyrolysis-differential mobility spectroscopy, short-wave infrared imaging, aqueous Nile Red labeling and counting, acoustophoresis, ultrasound, impedance spectroscopy, and dielectrophoresis.
    Description: We greatly thank our funding agencies: Gerstner Philanthropies (to A.P.M.M.), the Richard Saltonstall Charitable Foundation (to A.P.M.M.), and the Wallace Research Foundation (to A.P.M.M. and S.S.H.). Funding for M.G.B. was provided by a Draper Fellowship and to B.C.C. by an MIT Martin Fellowship. Draper thanks EPA region 9 for their partnership and support through a Cooperative Research and Development Agreement, an industry/government agreement regarding funding and personnel contributions of time and expertise.
    Keywords: Microplastics ; Plastic pollution ; Sensors ; Analytical chemistry ; Environment ; Water ; Ocean ; Marine pollution ; Polymers ; Freshwater ; Aqueous solutions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rodellas, V., Stieglitz, T. C., Tamborski, J. J., van Beek, P., Andrisoa, A., & Cook, P. G. Conceptual uncertainties in groundwater and porewater fluxes estimated by radon and radium mass balances. Limnology and Oceanography, (2021), https://doi.org/10.1002/lno.11678.
    Description: Radium isotopes and radon are routinely used as tracers to quantify groundwater and porewater fluxes into coastal and freshwater systems. However, uncertainties associated with the determination of the tracer flux are often poorly addressed and often neglect all the potential errors associated with the conceptualization of the system (i.e., conceptual uncertainties). In this study, we assess the magnitude of some of the key uncertainties related to the determination of the radium and radon inputs supplied by groundwater and porewater fluxes into a waterbody (La Palme Lagoon, France). This uncertainty assessment is addressed through a single model ensemble approach, where a tracer mass balance is run multiple times with variable sets of assumptions and approaches for the key parameters determined through a sensitivity test. In particular, conceptual uncertainties linked to tracer concentration, diffusive fluxes, radon evasion to the atmosphere, and change of tracer inventory over time were considered. The magnitude of porewater fluxes is further constrained using a comparison of independent methods: (1) 224Ra and (2) 222Rn mass balances in overlying waters, (3) a model of 222Rn deficit in sediments, and (4) a fluid‐salt numerical transport model. We demonstrate that conceptual uncertainties are commonly a major source of uncertainty on the estimation of groundwater or porewater fluxes and they need to be taken into account when using tracer mass balances. In the absence of a general framework for assessing these uncertainties, this study provides a practical approach to evaluate key uncertainties associated to radon and radium mass balances.
    Description: This research is a contribution to the ANR @RAction chair (ANR‐14‐ACHN‐0007‐01—T Stieglitz) and Labex OT‐Med (ANR‐11‐LABEX‐0061, part of the “Investissements d'Avenir” program through the A*MIDEX project ANR‐11‐IDEX‐0001‐02) funded by the French National Research Agency (ANR). This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska‐Curie grant 748896. V. Rodellas acknowledges financial support from the Beatriu de Pinós postdoctoral programme of the Catalan Government (2017‐BP‐00334). P. van Beek acknowledges financial support from the ANR (MED‐SGD project, ANR‐15‐CE01‐0004). We thank S. Thomas (Labex OT‐Med) for constructive comments and M. Diego‐Feliu for his help on statistical analysis. This study contributes to the work carried out by the MERS research group 2017‐SGR‐1588.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-10
    Description: Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet’s southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...