ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media  (18)
  • Institute of Physics  (13)
  • 2020-2024  (21)
  • 2020-2023  (10)
  • 2010-2014
  • 2005-2009
  • 1970-1974
  • 2021  (31)
  • 2021  (31)
Collection
Years
  • 2020-2024  (21)
  • 2020-2023  (10)
  • 2010-2014
  • 2005-2009
  • 1970-1974
  • +
Year
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Howell, K. L., Hilario, A., Allcock, A. L., Bailey, D. M., Baker, M., Clark, M. R., Colaco, A., Copley, J., Cordes, E. E., Danovaro, R., Dissanayake, A., Escobar, E., Esquete, P., Gallagher, A. J., Gates, A. R., Gaudron, S. M., German, C. R., Gjerde, K. M., Higgs, N. D., Le Bris, N., Levin, L. A., Manea, E., McClain, C., Menot, L., Mestre, N. C., Metaxas, A., Milligan, R. J., Muthumbi, A. W. N., Narayanaswamy, B. E., Ramalho, S. P., Ramirez-Llodra, E., Robson, L. M., Rogers, A. D., Sellanes, J., Sigwart, J. D., Sink, K., Snelgrove, P. V. R., Stefanoudis, P., V., Sumida, P. Y., Taylor, M. L., Thurber, A. R., Vieira, R. P., Watanabe, H. K., Woodall, L. C., & Xavier, J. R. A blueprint for an inclusive, global deep-sea ocean decade field program. Frontiers in Marine Science, 7, (2020): 584861, doi:10.3389/fmars.2020.584861.
    Description: The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (〉 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.
    Description: Development of this paper was supported by funding from the Scientific Committee on Oceanic Research (SCOR) awarded to KH and AH as working group 159 co-chairs. KH, BN, and KS are supported by the UKRI funded One Ocean Hub NE/S008950/1. AH work is supported by the CESAM (UIDP/50017/2020 + 1432 UIDB/50017/2020) that is funded by Fundação para a Ciência e a Tecnologia (FCT)/MCTES through national funds. AA is supported by Science Foundation Ireland and the Marine Institute under the Investigators Program Grant Number SFI/15/IA/3100 co-funded under the European Regional Development Fund 2014–2020. AC is supported through the FunAzores -ACORES 01-0145-FEDER-000123 grant and by FCT through strategic project UID/05634/2020 and FCT and Direção-Geral de Politica do Mar (DGPM) through the project Mining2/2017/005. PE is funded by national funds (OE), through FCT in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. SG research is supported by CNRS funds. CG is supported by an Independent Study Award and the Investment in Science Fund at WHOI. KG gratefully acknowledges support from Synchronicity Earth. LL is funded by the NOAA Office of Ocean Exploration and Research (NA19OAR0110305) and the US National Science Foundation (OCE 1634172). NM is supported by FCT and DGPM, through the project Mining2/2017/001 and the FCT grants CEECIND/00526/2017, UIDB/00350/2020 + UIDP/00350/2020. SR is funded by the FCTgrant CEECIND/00758/2017. JS is supported by ANID FONDECYT #1181153 and ANID Millennium Science Initiative Program #NC120030. JX research is funded by the European Union’s Horizon 2020 research and innovation program through the SponGES project (grant agreement no. 679849) and further supported by national funds through FCT within the scope of UIDB/04423/2020 and UIDP/04423/2020. The Natural Sciences and Engineering Council of Canada supports AM and PVRS. MB and the Deep-Ocean Stewardship Initiative are supported by Arcadia - A charitable fund of Lisbet Rausing and Peter Baldwin. BN work is supported by the NERC funded Arctic PRIZE NE/P006302/1.
    Keywords: Deep sea ; Blue economy ; Ocean Decade ; Biodivercity ; Essential ocean variables
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mayers, K. M. J., Poulton, A. J., Bidle, K., Thamatrakoln, K., Schieler, B., Giering, S. L. C., Wells, S. R., Tarran, G. A., Mayor, D., Johnson, M., Riebesell, U., Larsen, A., Vardi, A., & Harvey, E. L. The possession of coccoliths fails to deter microzooplankton grazers. Frontiers in Marine Science, 7, (2020): 562020, doi:10.3389/fmars.2020.569896.
    Description: Phytoplankton play a central role in the regulation of global carbon and nutrient cycles, forming the basis of the marine food webs. A group of biogeochemically important phytoplankton, the coccolithophores, produce calcium carbonate scales that have been hypothesized to deter or reduce grazing by microzooplankton. Here, a meta-analysis of mesocosm-based experiments demonstrates that calcification of the cosmopolitan coccolithophore, Emiliania huxleyi, fails to deter microzooplankton grazing. The median grazing to growth ratio for E. huxleyi (0.56 ± 0.40) was not significantly different among non-calcified nano- or picoeukaryotes (0.71 ± 0.31 and 0.55 ± 0.34, respectively). Additionally, the environmental concentration of E. huxleyi did not drive preferential grazing of non-calcified groups. These results strongly suggest that the possession of coccoliths does not provide E. huxleyi effective protection from microzooplankton grazing. Such indiscriminate consumption has implications for the dissolution and fate of CaCO3 in the ocean, and the evolution of coccoliths.
    Description: Mesocosm experiments in 2015 were supported by the Kiel Excellence Cluster “The Future Ocean” (CP1540) and the Leibniz Award to UR, in 2017 the MESOHUX experiment was supported by NSF (OCE-1559179) to KT and KB, NSF (OCE-1537951 and OCE-1459200) to KB, NSF (OCE-1459190, 1657808, and DBI-1624593) to EH, and in 2018 by AQUACOSM (EU H2020-INFRAIA-project No 731065). KM was supported by a NERC Doctoral Training Partnership (DTP) studentship as part of the Southampton Partnership for Innovative Training of Future Investigators Researching the Environment (SPITFIRE, grant number NE/L002531/1) and Research Council of Norway project (#280414) MIXsTRUCT.
    Keywords: coccolithophore ; phytoplankton ; microzooplankton ; biomineralisation ; predation ; evolution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-29
    Description: The organic thin film transistor (OTFT) has evolved in a big way, eventually replacing inorganic-based solid-state devices. An extensive survey of the literature reveals that the full potential of OTFTs has neither been explored nor exploited for circuit-level implementation for logic circuit design, despite the popularity of these devices. We have fabricated a PBTTT-C14 (poly (2,5-bis (3-tetradecylthiophen 2yl) thieno (3,2b) thiophene)) based OTFT by using a low-cost solution-processable technique via the floating transfer method (FTM). The fabricated OTFT using FTM shows better electrical behavior than its counterpart fabricated by using the conventional solution-processable technique. The superior electrical characteristics of the FTM-derived devices prompted us to develop a compact model of the p-channel OTFT. The compact modeling results of OTFT show a reasonably good agreement with our experimental results. We have also designed and implemented a PBTTT-C14 OTFT-based inverter circuit and ring oscillator circuit to explore the future of organic-based integrated circuits.
    Print ISSN: 0268-1242
    Electronic ISSN: 1361-6641
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-29
    Description: In general, superconducting tokamaks require low loop voltage current start up for the safety purpose of its poloidal field coils. The loop voltage inside the vacuum vessel of Steady-state Superconducting Tokamak (SST-1) is low in nature since its central solenoid is located outside the cryostat. The low loop voltage current start up of the SST-1 is routinely performed by Electron Cyclotron Resonance (ECR) method at the toroidal magnetic field Bt=1.5T(first harmonic) and 0.75T(second harmonic). Recently, an alternative RF based plasma current start up system had been planned for operating the machine specially for higher toroidal magnetic field regime 1.5T ≤ Bt ≤3T. The system is already developed based on an antenna system, made of series combinations of two at spiral antenna, to assist plasma current start up at lower inductive electric field. It is already tested and installed in SST-1 chamber. The system testing had been performed without background magnetic field within frequency regime 35-60MHz at present. The test results show that it can produce electron density ne ≈1016m-3 measured by the Langmuir probe in expense of 500W RF power. The spectroscopy results indicate that its capability to produce plasma density higher than 1013 m-3 and electron temperature Te = 2 -6eV. In addition, it also shows that the presence of turbulent electric field of the order of 106V/m at antenna center and finite anomalous temperature of neutral particles. Calculations show that the obtained density is enough for SST-1 low loop voltage plasma breakdown. The antenna system is also capable to produce plasma at higher frequencies. This article will discuss the development of the prototype and the installed antenna system along with their test results in detail.
    Print ISSN: 0741-3335
    Electronic ISSN: 1361-6587
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molino, G. D., Defne, Z., Aretxabaleta, A. L., Ganju, N. K., & Carr, J. A. Quantifying slopes as a driver of forest to marsh conversion using geospatial techniques: application to Chesapeake Bay coastal-plain, United States. Frontiers in Environmental Science, 9, (2021): 616319, https://doi.org/10.3389/fenvs.2021.616319.
    Description: Coastal salt marshes, which provide valuable ecosystem services such as flood mitigation and carbon sequestration, are threatened by rising sea level. In response, these ecosystems migrate landward, converting available upland into salt marsh. In the coastal-plain surrounding Chesapeake Bay, United States, conversion of coastal forest to salt marsh is well-documented and may offset salt marsh loss due to sea level rise, sediment deficits, and wave erosion. Land slope at the marsh-forest boundary is an important factor determining migration likelihood, however, the standard method of using field measurements to assess slope across the marsh-forest boundary is impractical on the scale of an estuary. Therefore, we developed a general slope quantification method that uses high resolution elevation data and a repurposed shoreline analysis tool to determine slope along the marsh-forest boundary for the entire Chesapeake Bay coastal-plain and find that less than 3% of transects have a slope value less than 1%; these low slope environments offer more favorable conditions for forest to marsh conversion. Then, we combine the bay-wide slope and elevation data with inundation modeling from Hurricane Isabel to determine likelihood of coastal forest conversion to salt marsh. This method can be applied to local and estuary-scale research to support management decisions regarding which upland forested areas are more critical to preserve as available space for marsh migration.
    Description: Funding for this study was provided by the United States Geological Survey’s Coastal/Marine Hazards and Resources Program and Ecosystems Mission Area.
    Keywords: Salt marsh ; Coastal forest ; Sea level rise ; Chesapeake Bay ; Marsh migration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Muenzer, P., Negro, R., Fukui, S., di Meglio, L., Aymonnier, K., Chu, L., Cherpokova, D., Gutch, S., Sorvillo, N., Shi, L., Magupalli, V. G., Weber, A. N. R., Scharf, R. E., Waterman, C. M., Wu, H., & Wagner, D. D. NLRP3 inflammasome assembly in neutrophils is supported by PAD4 and promotes NETosis under sterile conditions. Frontiers in Immunology, 12, (2021): 683803, https://doi.org/10.3389/fimmu.2021.683803.
    Description: Neutrophil extracellular trap formation (NETosis) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome assembly are associated with a similar spectrum of human disorders. While NETosis is known to be regulated by peptidylarginine deiminase 4 (PAD4), the role of the NLRP3 inflammasome in NETosis was not addressed. Here, we establish that under sterile conditions the cannonical NLRP3 inflammasome participates in NETosis. We show apoptosis-associated speck-like protein containing a CARD (ASC) speck assembly and caspase-1 cleavage in stimulated mouse neutrophils without LPS priming. PAD4 was needed for optimal NLRP3 inflammasome assembly by regulating NLRP3 and ASC protein levels post-transcriptionally. Genetic ablation of NLRP3 signaling resulted in impaired NET formation, because NLRP3 supported both nuclear envelope and plasma membrane rupture. Pharmacological inhibition of NLRP3 in either mouse or human neutrophils also diminished NETosis. Finally, NLRP3 deficiency resulted in a lower density of NETs in thrombi produced by a stenosis-induced mouse model of deep vein thrombosis. Altogether, our results indicate a PAD4-dependent formation of the NLRP3 inflammasome in neutrophils and implicate NLRP3 in NETosis under noninfectious conditions in vitro and in vivo.
    Description: This work was supported by a grant from National Heart, Lung, and Blood Institute of the National Institutes of Health (grant R35 HL135765) and a Steven Berzin family support to DDW, an Individual Erwin Deutsch fellowship by the German, Austrian and Swiss Society of Thrombosis and Hemostasis Research to RES, a Whitman fellowship (MBL) to DDW, and an Individual Marie Skłodowska-Curie Actions fellowship by the European Commission (796365 - COAGULANT) to PM. ANRW was funded by the Deutsche Forschungsgemeinschaft (TRR156/2 –246807620) and a research grant (We-4195/15-19). CMW was supported by the Division of Intramural Research, NHLBI, NIH.
    Keywords: Neutrophils ; NETs ; NLRP3 inflammasome ; MCC950 ; Deep vein thrombosis ; PAD4
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Govindarajan, A. F., Francolini, R. D., Jech, J. M., Lavery, A. C., Llopiz, J. K., Wiebe, P. H., & Zhang, W. Exploring the use of environmental DNA (eDNA) to detect animal taxa in the Mesopelagic Zone. Frontiers in Ecology and Evolution, 9, (2021): 574877, https://doi.org/10.3389/fevo.2021.574877.
    Description: Animal biodiversity in the ocean’s vast mesopelagic zone is relatively poorly studied due to technological and logistical challenges. Environmental DNA (eDNA) analyses show great promise for efficiently characterizing biodiversity and could provide new insight into the presence of mesopelagic species, including those that are missed by traditional net sampling. Here, we explore the utility of eDNA for identifying animal taxa. We describe the results from an August 2018 cruise in Slope Water off the northeast United States. Samples for eDNA analysis were collected using Niskin bottles during five CTD casts. Sampling depths along each cast were selected based on the presence of biomass as indicated by the shipboard Simrad EK60 echosounder. Metabarcoding of the 18S V9 gene region was used to assess taxonomic diversity. eDNA metabarcoding results were compared with those from net-collected (MOCNESS) plankton samples. We found that the MOCNESS sampling recovered more animal taxa, but the number of taxa detected per liter of water sampled was significantly higher in the eDNA samples. eDNA was especially useful for detecting delicate gelatinous animals which are undersampled by nets. We also detected eDNA changes in community composition with depth, but not with sample collection time (day vs. night). We provide recommendations for applying eDNA-based methods in the mesopelagic including the need for studies enabling interpretation of eDNA signals and improvement of barcode reference databases.
    Description: This research was part of the Woods Hole Oceanographic Institution’s Ocean Twilight Zone Project, funded as part of The Audacious Project housed at TED. Funding for the NOAA Ship Henry B Bigelow was provided by NOAA’s Office of Marine and Aviation Operations (OMAO).
    Keywords: Environmental DNA ; Mesopelagic ; Biodiversity ; Metabarcoding ; Zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in van Putten, I., Kelly, R., Cavanagh, R. D., Murphy, E. J., Breckwoldt, A., Brodie, S., Cvitanovic, C., Dickey-Collas, M., Maddison, L., Melbourne-Thomas, J., Arrizabalaga, H., Azetsu-Scott, K., Beckley, L. E., Bellerby, R., Constable, A. J., Cowie, G., Evans, K., Glaser, M., Hall, J., Hobday, A. J., Johnston, N. M., Llopiz, J. K., Mueter, F., Muller-Karger, F. E., Weng, K. C., Wolf-Gladrow, D., Xavier, J. C. A decade of incorporating social sciences in the Integrated Marine Biosphere Research Project (IMBeR): much done, much to do? Frontiers in Marine Science, 8, (2021): 662350, https://doi.org/10.3389/fmars.2021.662350.
    Description: Successful management and mitigation of marine challenges depends on cooperation and knowledge sharing which often occurs across culturally diverse geographic regions. Global ocean science collaboration is therefore essential for developing global solutions. Building effective global research networks that can enable collaboration also need to ensure inter- and transdisciplinary research approaches to tackle complex marine socio-ecological challenges. To understand the contribution of interdisciplinary global research networks to solving these complex challenges, we use the Integrated Marine Biosphere Research (IMBeR) project as a case study. We investigated the diversity and characteristics of 1,827 scientists from 11 global regions who were attendees at different IMBeR global science engagement opportunities since 2009. We also determined the role of social science engagement in natural science based regional programmes (using key informants) and identified the potential for enhanced collaboration in the future. Event attendees were predominantly from western Europe, North America, and East Asia. But overall, in the global network, there was growing participation by females, students and early career researchers, and social scientists, thus assisting in moving toward interdisciplinarity in IMBeR research. The mainly natural science oriented regional programmes showed mixed success in engaging and collaborating with social scientists. This was mostly attributed to the largely natural science (i.e., biological, physical) goals and agendas of the programmes, and the lack of institutional support and push to initiate connections with social science. Recognising that social science research may not be relevant to all the aims and activities of all regional programmes, all researchers however, recognised the (potential) benefits of interdisciplinarity, which included broadening scientists’ understanding and perspectives, developing connections and interlinkages, and making science more useful. Pathways to achieve progress in regional programmes fell into four groups: specific funding, events to come together, within-programme-reflections, and social science champions. Future research programmes should have a strategic plan to be truly interdisciplinary, engaging natural and social sciences, as well as aiding early career professionals to actively engage in such programmes.
    Description: This publication resulted in part from support from the U.S. National Science Foundation (Grant OCE-1840868) to the Scientific Committee on Oceanic Research (SCOR).
    Keywords: marine science ; research networks ; disciplines ; global ; regional programmes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rogers, A. D., Baco, A., Escobar-Briones, E., Gjerde, K., Gobin, J., Jaspars, M., Levin, L., Linse, K., Rabone, M., Ramirez-Llodra, E., Sellanes, J., Shank, T. M., Sink, K., Snelgrove, P. V. R., Taylor, M. L., Wagner, D., & Harden-Davies, H. Marine genetic resources in areas beyond national jurisdiction: promoting marine scientific research and enabling equitable benefit sharing. Frontiers in Marine Science, 8, (2021): 667274, https://doi.org/10.3389/fmars.2021.667274.
    Description: Growing human activity in areas beyond national jurisdiction (ABNJ) is driving increasing impacts on the biodiversity of this vast area of the ocean. As a result, the United Nations General Assembly committed to convening a series of intergovernmental conferences (IGCs) to develop an international legally-binding instrument (ILBI) for the conservation and sustainable use of marine biological diversity of ABNJ [the biodiversity beyond national jurisdiction (BBNJ) agreement] under the United Nations Convention on the Law of the Sea. The BBNJ agreement includes consideration of marine genetic resources (MGR) in ABNJ, including how to share benefits and promote marine scientific research whilst building capacity of developing states in science and technology. Three IGCs have been completed to date with the fourth delayed by the Covid pandemic. This delay has allowed a series of informal dialogues to take place between state parties, which have highlighted a number of areas related to MGR and benefit sharing that require technical guidance from ocean experts. These include: guiding principles on the access and use of MGR from ABNJ; the sharing of knowledge arising from research on MGR in ABNJ; and capacity building and technology transfer for developing states. In this paper, we explain what MGR are, the methods required to collect, study and archive them, including data arising from scientific investigation. We also explore the practical requirements of access by developing countries to scientific cruises, including the sharing of data, as well as participation in research and development on shore whilst promoting rather than hindering marine scientific research. We outline existing infrastructure and shared resources that facilitate access, research, development, and benefit sharing of MGR from ABNJ; and discuss existing gaps. We examine international capacity development and technology transfer schemes that might facilitate or complement non-monetary benefit sharing activities. We end the paper by highlighting what the ILBI can achieve in terms of access, utilization, and benefit sharing of MGR and how we might future-proof the BBNJ Agreement with respect to developments in science and technology.
    Description: We would like to thank the Governments of The Kingdom of Belgium, The Principality of Monaco and Costa Rica, as well as The Prince Albert II Monaco Foundation, The Norwegian Nobel Institute, The Nobel Institute, The High Seas Alliance, The Pew Charitable Trusts, Ocean Unite and REV Ocean for supporting the High Seas Treaty Dialogues which have allowed informal discussions between States representatives on the Biodiversity Beyond National Jurisdiction agreement.
    Keywords: high seas ; marine genetic resources ; access and benefit sharing ; UNCLOS ; developing states
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Skomal, G., Marshall, H., Galuardi, B., Natanson, L., Braun, C. D., & Bernal, D. Horizontal and vertical movement patterns and habitat use of juvenile porbeagles (Lamna nasus) in the Western North Atlantic. Frontiers in Marine Science, 8,(2021): 624158, https://doi.org/10.3389/fmars.2021.624158.
    Description: The porbeagle (Lamna nasus) is a large, highly migratory endothermic shark broadly distributed in the higher latitudes of the Atlantic, South Pacific, and Indian Oceans. In the North Atlantic, the porbeagle has a long history of fisheries exploitation and current assessments indicate that this stock is severely overfished. Although much is known of the life history of this species, there is little fisheries-independent information about habitat preferences and ecology. To examine migratory routes, vertical behavior, and environmental associations in the western North Atlantic, we deployed pop-up satellite archival transmitting tags on 20 porbeagles in late November, 2006. The sharks, ten males and ten females ranging from 128 to 154 cm fork length, were tagged and released from a commercial longline fishing vessel on the northwestern edge of Georges Bank, about 150 km east of Cape Cod, MA. The tags were programmed to release in March (n = 7), July (n = 7), and November (n = 6) of 2007, and 17 (85%) successfully reported. Based on known and derived geopositions, the porbeagles exhibited broad seasonally-dependent horizontal and vertical movements ranging from minimum linear distances of 937 to 3,310 km and from the surface to 1,300 m, respectively. All of the sharks remained in the western North Atlantic from the Gulf of Maine, the Scotian Shelf, on George's Bank, and in the deep, oceanic waters off the continental shelf along the edge of, and within, the Gulf Stream. In general, the population appears to be shelf-oriented during the summer and early fall with more expansive offshore radiation in the winter and spring. Although sharks moved through temperatures ranging from 2 to 26°C, the bulk of their time (97%) was spent in 6-20°C. In the summer months, most of the sharks were associated with the continental shelf moving between the surface and the bottom and remaining 〈 200 m deep. In the late fall and winter months, the porbeagles moved into pelagic habitat and exhibited two behavioral patterns linked with the thermal features of the Gulf Stream: “non-divers” (n = 7) largely remained at epipelagic depths and “divers” (n = 10) made frequent dives into and remained at mesopelagic depths (200–1000 m). These data demonstrate that juvenile porbeagles are physiologically capable of exploiting the cool temperate waters of the western North Atlantic as well as the mesopelagic depths of the Gulf Stream, possibly allowing exploitation of prey not available to other predators.
    Description: This research was funded by the Large Pelagics Research Center (Grant 06-125).
    Keywords: porbeagle movements ; diving behavior ; Western North Atlantic Ocean ; Gulf Stream ; endothermy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...