ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (12)
  • Nature Publishing Group
  • 2020-2022  (12)
  • 1960-1964
  • 2021  (12)
  • 1
  • 2
    Publication Date: 2021-02-17
    Description: A signification fraction of Galactic massive stars ($ge 8, m M_{odot }$) are ejected from their parent cluster and supersonically sail away through the interstellar medium (ISM). The winds of these fast-moving stars blow asymmetric bubbles thus creating a circumstellar environment in which stars eventually die with a supernova explosion. The morphology of the resulting remnant is largely governed by the circumstellar medium of the defunct progenitor star. In this paper, we present 2D magneto-hydrodynamical simulations investigating the effect of the ISM magnetic field on the shape of the supernova remnants of a 35 M⊙ star evolving through a Wolf-Rayet phase and running with velocity 20 and $40, m km, m s^{-1}$, respectively. A $7, mu m G$ ambient magnetic field is sufficient to modify the properties of the expanding supernova shock front and in particular to prevent the formation of filamentary structures. Prior to the supernova explosion, the compressed magnetic field in the circumstellar medium stabilises the wind/ISM contact discontinuity in the tail of the wind bubble. A consequence is a reduced mixing efficiency of ejecta and wind materials in the inner region of the remnant, where the supernova shock wave propagates. Radiative transfer calculations for synchrotron emission reveal that the non-thermal radio emission has characteristic features reflecting the asymmetry of exiled core-collapse supernova remnants from Wolf-Rayet progenitors. Our models are qualitatively consistent with the radio appearance of several remnants of high-mass progenitors, namely the bilateral G296.5+10.0 and the shell-type remnants CTB109 and Kes 17, respectively.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-19
    Description: Resolving the genomic basis underlying phenotypic variations is a question of great importance in evolutionary biology. However, understanding how genotypes determine the phenotypes is still challenging. Centuries of artificial selective breeding for beauty and aggression resulted in a plethora of colors, long fin varieties, and hyper-aggressive behavior in the air-breathing Siamese fighting fish (Betta splendens), supplying an excellent system for studying the genomic basis of phenotypic variations. Combining whole genome sequencing, QTL mapping, genome-wide association studies and genome editing, we investigated the genomic basis of huge morphological variation in fins and striking differences in coloration in the fighting fish. Results revealed that the double tail, elephant ear, albino and fin spot mutants each were determined by single major-effect loci. The elephant ear phenotype was likely related to differential expression of a potassium ion channel gene, kcnh8. The albinotic phenotype was likely linked to a cis-regulatory element acting on the mitfa gene and the double tail mutant was suggested to be caused by a deletion in a zic1/zic4 co-enhancer. Our data highlight that major loci and cis-regulatory elements play important roles in bringing about phenotypic innovations and establish Bettas as new powerful model to study the genomic basis of evolved changes.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-06
    Description: Summary We develop and apply a method to constrain the space- and frequency-dependent location of ambient noise sources. This is based on ambient noise cross-correlation inversion using numerical wavefield simulations, which honour 3-D crustal and mantle structure, ocean loading, and finite-frequency effects. In the frequency range from 3 - 20 mHz, our results constrain the global source distribution of the Earth’s hum, averaged over the southern hemisphere winter season of 9 years. During southern-hemisphere winter, the dominant sources are largely confined to the southern hemisphere, the most prominent exception being the Izu-Bonin-Mariana arc, which is the most active source region between 12 - 20 mHz. Generally, strong hum sources seem to be associated with either coastlines or bathymetric highs. In contrast, deep ocean basins are devoid of hum sources. While being based on the relatively small number of STS-1 broadband stations that have been recording continuously from 2004 - 2013, our results demonstrate the practical feasibility of a frequency-dependent noise source inversion that accounts for the complexities of 3-D wave propagation. It may thereby improve full-waveform ambient noise inversions and our understanding of the physics of noise generation.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-19
    Description: Measuring the H i–halo mass scaling relation (HIHM) is fundamental to understanding the role of H i in galaxy formation and its connection to structure formation. While direct measurements of the H i mass in haloes are possible using H i-spectral stacking, the reported shape of the relation depends on the techniques used to measure it (e.g. monotonically increasing with mass versus flat, mass-independent). Using a simulated H i and optical survey produced with the shark semi-analytic galaxy formation model, we investigate how well different observational techniques can recover the intrinsic, theoretically predicted, HIHM relation. We run a galaxy group finder and mimic the H i stacking procedure adopted by different surveys and find we can reproduce their observationally derived HIHM relation. However, none of the adopted techniques recover the underlying HIHM relation predicted by the simulation. We find that systematic effects in halo mass estimates of galaxy groups modify the inferred shape of the HIHM relation from the intrinsic one in the simulation, while contamination by interloping galaxies, not associated with the groups, contribute to the inferred H i mass of a halo mass bin, when using large velocity windows for stacking. The effect of contamination is maximal at $M^{ m }_{ m vir}$$sim 10^{12-12.5} m M_{odot }$. Stacking methods based on summing the H i emission spectra to infer the mean H i mass of galaxies of different properties belonging to a group suffer minimal contamination but are strongly limited by the use of optical counterparts, which miss the contribution of dwarf galaxies. Deep spectroscopic surveys will provide significant improvements by going deeper while maintaining high spectroscopic completeness; for example, the WAVES survey will recover ∼52 per cent of the total H i mass of the groups with $M^{ m }_{ m vir}$ ∼ 1014M⊙ compared to ∼21 per cent in GAMA.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-07
    Description: The analysis of individual X-ray sources that appear in a crowded field can easily be compromised by the misallocation of recorded events to their originating sources. Even with a small number of sources, which none the less have overlapping point spread functions, the allocation of events to sources is a complex task that is subject to uncertainty. We develop a Bayesian method designed to sift high-energy photon events from multiple sources with overlapping point spread functions, leveraging the differences in their spatial, spectral, and temporal signatures. The method probabilistically assigns each event to a given source. Such a disentanglement allows more detailed spectral or temporal analysis to focus on the individual component in isolation, free of contamination from other sources or the background. We are also able to compute source parameters of interest like their locations, relative brightness, and background contamination, while accounting for the uncertainty in event assignments. Simulation studies that include event arrival time information demonstrate that the temporal component improves event disambiguation beyond using only spatial and spectral information. The proposed methods correctly allocate up to 65${{ m per cent}}$ more events than the corresponding algorithms that ignore event arrival time information. We apply our methods to two stellar X-ray binaries, UV Cet and HBC 515 A, observed with Chandra. We demonstrate that our methods are capable of removing the contamination due to a strong flare on UV Cet B in its companion ≈40× weaker during that event, and that evidence for spectral variability at times-scales of a few ks can be determined in HBC 515 Aa and HBC 515 Ab.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-19
    Description: A significative fraction of all massive stars in the Milky Way move supersonically through their local interstellar medium (ISM), producing bow shock nebulae by wind-ISM interaction. The stability of these observed astrospheres around cool massive stars challenges precedent 2D (magneto-)hydrodynamical (MHD) simulations of their surroundings. We present 3D MHD simulations of the circumstellar medium of runaway M-type red supergiant stars moving with velocity $v_{star }=50, m km, m s^{-1}$. We treat the stellar wind with a Parker spiral and assume a $7, m mu G$ magnetization of the ISM. Our free parameter is the angle θmag between ISM flow and magnetization, taken to 0°, 45°, and 90°. It is found that simulation dimension, coordinate systems, and grid effects can greatly affect the development of the modelled astrospheres. Nevertheless, as soon as the ISM flow and magnetization directions differs by more than a few degrees (θmag ≥ 5°), the bow shock is stabilized, most clumpiness and ragged structures vanishing. The complex shape of the bow shocks induce important projection effects, e.g. at optical H α line, producing complex of astrospheric morphologies. We speculate that those effects are also at work around earlier-type massive stars, which would explain their diversity of their observed arc-like nebula around runaway OB stars. Our 3D MHD models are fitting well observations of the astrospheres of several runaway red supergiant stars. The results interpret the smoothed astrosphere of IRC-10414 and Betelgeuse (αOri) are stabilized by an organized non-parallel ambient magnetic field. Our findings suggest that IRC-10414 is currently in a steady state of its evolution, and that Betelgeuse’s bar is of interstellar origin.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-28
    Description: Wolf-Rayet stars are amongst the rarest but also most intriguing massive stars. Their extreme stellar winds induce famous multi-wavelength circumstellar gas nebulae of various morphologies, spanning from circles and rings to bipolar shapes. This study is devoted to the investigation of the formation of young, asymmetric Wolf-Rayet gas nebulae and we present a 2.5-dimensional magneto-hydrodynamical toy model for the simulation of Wolf-Rayet gas nebulae generated by wind-wind interaction. Our method accounts for stellar wind asymmetries, rotation, magnetisation, evolution and mixing of materials. It is found that the morphology of the Wolf-Rayet nebulae of blue supergiant ancestors is tightly related to the wind geometry and to the stellar phase transition time interval, generating either a broadened peanut-like or a collimated jet-like gas nebula. Radiative transfer calculations of our Wolf-Rayet nebulae for dust infrared emission at $24, mu m m$ show that the projected diffuse emission can appear as oblate, bipolar, ellipsoidal or ring structures. Important projection effects are at work in shaping observed Wolf-Rayet nebulae. This might call a revision of the various classifications of Wolf-Rayet shells, which are mostly based on their observed shape. Particularly, our models question the possibility of producing pre-Wolf-Rayet wind asymmetries, responsible for bipolar nebulae like NGC 6888, within the single red supergiant evolution channel scenario. We propose that bipolar Wolf-Rayet nebulae can only be formed within the red supergiant scenario by multiple/merged massive stellar systems, or by single high-mass stars undergoing additional, e.g. blue supergiant, evolutionary stages prior to the Wolf-Rayet phase.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-06
    Description: SUMMARY Observations of seismic anisotropy at the base of the mantle are abundant. Given recent progress in understanding how deformation relates to anisotropy in lowermost mantle minerals at the relevant pressure and temperature conditions, these observations can be used to test specific geodynamic scenarios, and have the potential to reveal patterns of flow at the base of the mantle. For example, several recent studies have sought to reproduce measurements of shear wave splitting due to D″ anisotropy using models that invoke specific flow and texture development geometries. A major limitation in such studies, however, is that the forward modelling is nearly always carried out using a ray theoretical framework, and finite-frequency wave propagation effects are not considered. Here we present a series of numerical wave propagation simulation experiments that explore the finite-frequency sensitivity of SKS, SKKS and ScS phases to laterally varying anisotropy at the base of the mantle. We build on previous work that developed forward modelling capabilities for anisotropic lowermost mantle models using the AxiSEM3D spectral element solver, which can handle arbitrary anisotropic geometries. This approach enables us to compute seismograms for relatively short periods (∼4 s) for models that include fully 3-D anisotropy at moderate computational cost. We generate synthetic waveforms for a suite of anisotropic models with increasing complexity. We first test a variety of candidate elastic tensors in laterally homogeneous models to understand how different lowermost mantle elasticity scenarios express themselves in shear wave splitting measurements. We then consider a series of laterally heterogeneous models of increasing complexity, exploring how splitting behaviour varies across the edges of anisotropic blocks and investigating the minimum sizes of anisotropic heterogeneities that can be reliably detected using SKS, SKKS and ScS splitting. Finally, we apply our modelling strategy to a previously published observational study of anisotropy at the base of the mantle beneath Iceland. Our results show that while ray theory is often a suitable approximation for predicting splitting, particularly for SK(K)S phases, full-wave effects on splitting due to lowermost mantle anisotropy can be considerable in some circumstances. Our simulations illuminate some of the challenges inherent in reliably detecting deep mantle anisotropy using body wave phases, and point to new strategies for interpreting SKS, SKKS and ScS waveforms that take full advantage of newly available computational techniques in seismology.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-20
    Description: Within its observational band the Laser Interferometer Space Antenna, LISA, will simultaneously observe orbital modulated waveforms from Galactic white dwarf binaries, a binary black hole produced gravitational-wave background, and potentially a cosmologically created stochastic gravitational-wave background (SGWB). The overwhelming majority of stars end their lives as white dwarfs, making them very numerous in the Milky Way. We simulate Galactic white dwarf binary gravitational-wave emission based on distributions from various mock catalogs and determine a complex waveform from the Galactic foreground with 3.5 × 107 binaries. We describe the effects from the Galactic binary distribution population across mass, position within the Galaxy, core type, and orbital frequency distribution. We generate the modulated Galactic white dwarf signal detected by LISA due to its orbital motion, and present a data analysis strategy to address it. The Fisher Information and Markov Chain Monte Carlo methods give an estimation of the LISA noise and the parameters for the different signal classes. We estimate the detectable limits for the future LISA observation of the SGWB in the spectral domain with the three LISA channels A, E, and T. We simultaneously estimate the Galactic foreground, the astrophysical and cosmological backgrounds. Assuming the expected astrophysical background and a Galactic foreground, a cosmological background energy density of around ΩGW, cosmo ≈ 8 × 10−13 could be detected by LISA. LISA will either detect a cosmologically produced SGWB, or set a limit that will have important consequences.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...