ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (47)
  • Molecular Diversity Preservation International  (47)
  • American Chemical Society
  • 2020-2022  (47)
  • 1990-1994
  • 1980-1984
  • 1975-1979
  • 1960-1964
  • 1955-1959
  • 2021  (47)
  • Geography  (47)
Collection
  • Articles  (47)
Years
  • 2020-2022  (47)
  • 1990-1994
  • 1980-1984
  • 1975-1979
  • 1960-1964
  • +
Year
Journal
  • 1
    Publication Date: 2021-03-23
    Description: Vegetation has been effectively monitored using remote sensing time-series vegetation index (VI) data for several decades. Drought monitoring has been a common application with algorithms tuned to capturing anomalous temporal and spatial vegetation patterns. Drought stress models, such as the Vegetation Drought Response Index (VegDRI), often use VIs like the Normalized Difference Vegetation Index (NDVI). The EROS expedited Moderate Resolution Imaging Spectroradiometer (eMODIS)-based, 7-day NDVI composites are integral to the VegDRI. As MODIS satellite platforms (Terra and Aqua) approach mission end, the Visible Infrared Imaging Radiometer Suite (VIIRS) presents an alternate NDVI source, with daily collection, similar band passes, and moderate spatial resolution. This study provides a statistical comparison between EROS expedited VIIRS (eVIIRS) 375-m and eMODIS 250-m and tests the suitability of replacing MODIS NDVI with VIIRS NDVI for drought monitoring and vegetation anomaly detection. For continuity with MODIS NDVI, we calculated a geometric mean regression adjustment algorithm using 375-m resolution for an eMODIS-like NDVI (eVIIRS’) eVIIRS’ = 0.9887 × eVIIRS − 0.0398. The resulting statistical comparisons (eVIIRS’ vs. eMODIS NDVI) showed correlations consistently greater than 0.84 throughout the three years studied. The eVIIRS’ VegDRI results characterized similar drought patterns and hotspots to the eMODIS-based VegDRI, with near zero bias.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-10
    Description: Remote sensing analyses focused on non-timber forest product (NTFP) collection and grazing are current research priorities of land systems science. However, mapping these particular land use patterns in rural heterogeneous landscapes is challenging because their potential signatures on the landscape cannot be positively identified without fine-scale land use data for validation. Using field-mapped resource areas and household survey data from participatory mapping research, we combined various Landsat-derived indices with ancillary data associated with human habitation to model the intensity of grazing and NTFP collection activities at 100-m spatial resolution. The study area is situated centrally within a transboundary southern African landscape that encompasses community-based organization (CBO) areas across three countries. We conducted four iterations of pixel-based random forest models, modifying the variable set to determine which of the covariates are most informative, using the best fit predictions to summarize and compare resource use intensity by resource type and across communities. Pixels within georeferenced, field-mapped resource areas were used as training data. All models had overall accuracies above 60% but those using proxies for human habitation were more robust, with overall accuracies above 90%. The contribution of Landsat data as utilized in our modeling framework was negligible, and further research must be conducted to extract greater value from Landsat or other optical remote sensing platforms to map these land use patterns at moderate resolution. We conclude that similar population proxy covariates should be included in future studies attempting to characterize communal resource use when traditional spectral signatures do not adequately capture resource use intensity alone. This study provides insights into modeling resource use activity when leveraging both remotely sensed data and proxies for human habitation in heterogeneous, spectrally mixed rural land areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-15
    Description: The lack of accurate distribution maps and reliable abundance estimates for marine species can limit the ability of managers to design scale-appropriate management measures for a stock or population. Here, we tested the utility of aerial photogrammetry for conducting large-scale surveys of nesting marine turtles at remote locations, with a focus on the flatback turtle (Natator depressus) in the Pilbara region of Western Australia. Aerial surveys were conducted between 29 November and 6 December 2016 to overlap with the peak nesting season for flatback turtles and collected imagery was used to examine marine turtle distribution, abundance, and cumulative exposure to industrial activity relative to overlap with protected areas. Two observers independently reviewed aerial georeferenced photographs of 644 beaches and recorded turtle tracks and other evidence of turtle nesting activity. A total of 375 beaches showed signs of nesting activity by either flatback, green (Chelonia mydas) or hawksbill (Eretmochelys imbricata) turtles. Most of these beaches (85.3%) were located on islands, and the rest (14.7%) on the mainland. Half (n = 174) of the active beaches showed evidence of fresh (0–36 h. old) flatback nesting activity, with track abundance varying from 1.0 to 222.0 tracks·night−1. Six rookeries accounted for 62% of the Pilbara flatback stock. Remarkably, 77% of identified flatback rookeries occurred within protected areas. However, one-third (34%) of those were also located within 5 km of a major industrial site, including eight of the highest abundance beaches (50–250 tracks·night−1). Several key rookeries were also identified as being relatively unexposed to industry-related pressures but currently unprotected, highlighting the need for a cumulative impact assessment to be completed for this flatback stock. Finally, our aerial tallies and multiple ground-survey flatback track tallies were highly correlated and together with low intra- and inter-observer errors suggested that reliable data can be collected via aerial photogrammetry for nesting marine turtles. Such large-scale digitized surveys can therefore be used to assess the cumulative exposure of marine turtles to pressures, and to reveal new conservation opportunities.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-18
    Description: Projective transformation of spheres onto images produce ellipses, whose centers do not coincide with the projected center of the sphere. This results in an eccentricity error, which must be treated in high precision metrology. This article provides closed formulations for modeling this error in images to enable 3-dimensional (3D) reconstruction of the center of spherical objects. The article also provides a new direct robust method for detecting spherical pattern in point clouds. It was shown that the eccentricity error in an image has only one component in the direction of the major axis of the ellipse. It was also revealed that the eccentricity is zero if and only if the center of the projected sphere lies on the camera’s perspective center. The effectiveness of the robust sphere detection and the eccentricity error modeling method was evaluated on simulated point clouds of spheres and real-world images, respectively. It was observed that the proposed robust sphere fitting method outperformed the popular M-estimator sample consensus in terms of radius and center estimation accuracy by a factor of 13, and 14 on average, respectively. Using the proposed eccentricity adjustment, the estimated 3D center of the sphere using modeled eccentricity was superior to the unmodeled case. It was also observed that the accuracy of the estimated 3D center using modeled eccentricity continuously improved as the number of images increased, whereas the unmodeled eccentricity did not show improvements after eight image views. The results of the investigation show that: (i) the proposed method effectively modeled the eccentricity error, and (ii) the effects of eliminating the eccentricity error in the 3D reconstruction become even more pronounced in a larger number of image views.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-23
    Description: The extraction of automated plant phenomics from digital images has advanced in recent years. However, the accuracy of extracted phenomics, especially for individual plants in a field environment, requires improvement. In this paper, a new and efficient method of extracting individual plant areas and their mean normalized difference vegetation index from high-resolution digital images is proposed. The algorithm was applied on perennial ryegrass row field data multispectral images taken from the top view. First, the center points of individual plants from digital images were located to exclude plant positions without plants. Second, the accurate area of each plant was extracted using its center point and radius. Third, the accurate mean normalized difference vegetation index of each plant was extracted and adjusted for overlapping plants. The correlation between the extracted individual plant phenomics and fresh weight ranged between 0.63 and 0.75 across four time points. The methods proposed are applicable to other crops where individual plant phenotypes are of interest.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-11
    Description: Assessment of the spatio-temporal dynamics of shifting cultivation is important to understand the opportunities for land restoration. The past studies on shifting cultivation mapping of North-East (NE) India lack systematic assessment techniques. We have developed a decision tree-based multi-step threshold (DTMT) method for consistent and long-term mapping of shifting cultivation using Landsat data from 1975 to 2018. Widely used vegetation indices such as normalized difference vegetation index (NDVI), Normalized Burn Ratio (NBR) and its relative difference NBR (RdNBR) were integrated with the suitable thresholds in the classification, which yielded overall accuracy above 85%. A significant decrease in total shifting cultivation area was observed with an overall reduction of 75% from 1975–1976 to 2017–2018. The methodology presented in this study is reproducible with minimal inputs and can be useful to map similar changes by optimizing the index threshold values to accommodate relative differences for other landscapes. Furthermore, the crop-suitability maps generated by incorporating climate and soil factors prioritizes suitable land use of shifting cultivation plots. The Google Earth Engine (GEE) platform was employed for automatic mapping of the shifting cultivation areas at desired time intervals for facilitating seamless dissemination of the map products. Besides the novel DTMT method, the shifting cultivation and crop-suitability maps generated in this study, can aid in sustainable land management.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-26
    Description: The diameter distribution of savanna tree populations is a valuable indicator of savanna health because changes in the number and size of trees can signal a shift from savanna to grassland or forest. Savanna diameter distributions have traditionally been monitored with forestry techniques, where stem diameter at breast height (DBH) is measured in the field within defined sub-hectare plots. However, because the spatial scale of these plots is often misaligned with the scale of variability in tree populations, there is a need for techniques that can scale-up diameter distribution surveys. Dense point clouds collected from uncrewed aerial vehicle laser scanners (UAV-LS), also known as drone-based LiDAR (Light Detection and Ranging), can be segmented into individual tree crowns then related to stem diameter with the application of allometric scaling equations. Here, we sought to test the potential of UAV-LS tree segmentation and allometric scaling to model the diameter distributions of savanna trees. We collected both UAV-LS and field-survey data from five one-hectare savanna woodland plots in northern Australia, which were divided into two calibration and three validation plots. Within the two calibration plots, allometric scaling equations were developed by linking field-surveyed DBH to the tree metrics of manually delineated tree crowns, where the best performing model had a bias of 1.8% and the relatively high RMSE of 39.2%. A segmentation algorithm was then applied to segment individual tree crowns from UAV-LS derived point clouds, and individual tree level segmentation accuracy was assessed against the manually delineated crowns. 47% of crowns were accurately segmented within the calibration plots and 68% within the validation plots. Using the site-specific allometry, DBH was modelled from crown metrics within all five plots, and these modelled results were compared to field-surveyed diameter distributions. In all plots, there were significant differences between field-surveyed and UAV-LS modelled diameter distributions, which became similar at two of the plots when smaller trees (
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-16
    Description: Estimation of the number and geo-location of oil wells is important for policy holders considering their impact on energy resource planning. With the recent development in optical remote sensing, it is possible to identify oil wells from satellite images. Moreover, the recent advancement in deep learning frameworks for object detection in remote sensing makes it possible to automatically detect oil wells from remote sensing images. In this paper, we collected a dataset named Northeast Petroleum University–Oil Well Object Detection Version 1.0 (NEPU–OWOD V1.0) based on high-resolution remote sensing images from Google Earth Imagery. Our database includes 1192 oil wells in 432 images from Daqing City, which has the largest oilfield in China. In this study, we compared nine different state-of-the-art deep learning models based on algorithms for object detection from optical remote sensing images. Experimental results show that the state-of-the-art deep learning models achieve high precision on our collected dataset, which demonstrate the great potential for oil well detection in remote sensing.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-16
    Description: The application of unmanned aerial systems (UAS) in forest research includes a wide range of equipment, systems, and flight settings, creating a need for enhancing data acquisition efficiency and quality. Thus, we assessed the effects of flying altitude and lateral and longitudinal overlaps on digital aerial photogrammetry (DAP) processing and the ability of its products to provide point clouds for forestry inventory. For this, we used 18 combinations of flight settings for data acquisition, and a nationwide airborne laser scanning (ALS) dataset as reference data. Linear regression was applied for modeling DAP quality indicators and model fitting quality as the function of flight settings; equivalence tests compared DAP- and ALS-products. Most of DAP-Digital Terrain Models (DTM) showed a moderate to high agreement (R2 〉 0.70) when fitted to ALS-based models; nine models had a regression slope within the 1% region of equivalence. The best DAP-Canopy Height Model (CHM) was generated using ALS-DTM with an R2 = 0.42 when compared with ALS-CHM, indicating reduced similarity. Altogether, our results suggest that the optimal combination of flight settings should include a 90% lateral overlap, a 70% longitudinal overlap, and a minimum altitude of 120 m above ground level, independent of the availability of an ALS-derived DTM for height normalization. We also provided insights into the effects of flight settings on DAP outputs for future applications in similar forest stands, emphasizing the benefits of overlaps for comprehensive scene reconstruction and altitude for canopy surface detection.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-14
    Description: Understanding the patterns and relationships between vegetation productivity and climatic conditions is essential for predicting the future impacts of climate change. Climate change is altering precipitation patterns and increasing temperatures in the Southwest United States. The large-scale and long-term effects of these changes on vegetation productivity are not well understood. This study investigates the patterns and relationships between seasonal vegetation productivity, represented by Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI), and the Standardized Precipitation Evapotranspiration Index (SPEI) across the Mojave, Sonoran, and Chihuahuan Deserts and the Apache Highlands of the Southwest United States over 16 years from 2000 to 2015. To examine the spatiotemporal gradient and response of vegetation productivity to dry and wet conditions, we evaluated the linear trend of different SPEI timescales and correlations between NDVI and SPEI. We found that all four ecoregions are experiencing more frequent and severe drought conditions in recent years as measured by negative SPEI trends and severe negative SPEI values. We found that changes in NDVI were more strongly correlated with winter rather than summer water availability. Investigating correlations by vegetation type across all four ecoregions, we found that grassland and shrubland productivity were more dependent on summer water availability whereas sparse vegetation and forest productivity were more dependent on winter water availability. Our results can inform resource management and enhance our understanding of vegetation vulnerability to climate change.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...