ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Association for the Sciences of Limnology and Oceanography  (4)
  • 2020-2023  (4)
  • 2020-2020
  • 2022  (2)
  • 2021  (2)
  • 1
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Orenstein, E., Ayata, S., Maps, F., Becker, É., Benedetti, F., Biard, T., Garidel‐Thoron, T., Ellen, J., Ferrario, F., Giering, S., Guy‐Haim, T., Hoebeke, L., Iversen, M., Kiørboe, T., Lalonde, J., Lana, A., Laviale, M., Lombard, F., Lorimer, T., Martini, S., Meyer, A., Möller, K.O., Niehoff, B., Ohman, M.D., Pradalier, C., Romagnan, J.-B., Schröder, S.-M., Sonnet, V., Sosik, H.M., Stemmann, L.S., Stock, M., Terbiyik-Kurt, T., Valcárcel-Pérez, N., Vilgrain, L., Wacquet, G., Waite, A.M., & Irisson, J. Machine learning techniques to characterize functional traits of plankton from image data. Limnology and Oceanography, 67(8), (2022): 1647-1669, https://doi.org/10.1002/lno.12101.
    Description: Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab-based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms.
    Description: SDA acknowledges funding from CNRS for her sabbatical in 2018–2020. Additional support was provided by the Institut des Sciences du Calcul et des Données (ISCD) of Sorbonne Université (SU) through the support of the sponsored junior team FORMAL (From ObseRving to Modeling oceAn Life), especially through the post-doctoral contract of EO. JOI acknowledges funding from the Belmont Forum, grant ANR-18-BELM-0003-01. French co-authors also wish to thank public taxpayers who fund their salaries. This work is a contribution to the scientific program of Québec Océan and the Takuvik Joint International Laboratory (UMI3376; CNRS - Université Laval). FM was supported by an NSERC Discovery Grant (RGPIN-2014-05433). MS is supported by the Research Foundation - Flanders (FWO17/PDO/067). FB received support from ETH Zürich. MDO is supported by the Gordon and Betty Moore Foundation and the U.S. National Science Foundation. ECB is supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under the grant agreement no. 88882.438735/2019-01. TB is supported by the French National Research Agency (ANR-19-CE01-0006). NVP is supported by the Spanish State Research Agency, Ministry of Science and Innovation (PTA2016-12822-I). FL is supported by the Institut Universitaire de France (IUF). HMS was supported by the Simons Foundation (561126) and the U.S. National Science Foundation (CCF-1539256, OCE-1655686). Emily Peacock is gratefully acknowledged for expert annotation of IFCB images. LS was supported by the Chair VISION from CNRS/Sorbonne Université.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tamborski, J. J., Eagle, M., Kurylyk, B. L., Kroeger, K. D., Wang, Z. A., Henderson, P., & Charette: 1774-1792, https://doi.org/10.1002/lno.11721.
    Description: Respiration in intertidal salt marshes generates dissolved inorganic carbon (DIC) that is exported to the coastal ocean by tidal exchange with the marsh platform. Understanding the link between physical drivers of water exchange and chemical flux is a key to constraining coastal wetland contributions to regional carbon budgets. The spatial and temporal (seasonal, annual) variability of marsh pore water exchange and DIC export was assessed from a microtidal salt marsh (Sage Lot Pond, Massachusetts). Spatial variability was constrained from 224Ra : 228Th disequilibria across two hydrologic units within the marsh sediments. Disequilibrium between the more soluble 224Ra and its sediment-bound parent 228Th reveals significant pore water exchange in the upper 5 cm of the marsh surface (0–36 L m−2 d−1) that is most intense in low marsh elevation zones, driven by tidal overtopping. Surficial sediment DIC transport ranges from 0.0 to 0.7 g C m−2 d−1. The sub-surface sediment horizon intersected by mean low tide was disproportionately impacted by tidal pumping (20–80 L m−2 d−1) and supplied a seasonal DIC flux of 1.7–5.4 g C m−2 d−1. Export exceeded 10 g C m−2 d−1 for another marsh unit, demonstrating that fluxes can vary substantially across salt marshes under similar conditions within the same estuary. Seasonal and annual variability in marsh pore water exchange, constrained from tidal time-series of radium isotopes, was driven in part by variability in mean sea level. Rising sea levels will further inundate high marsh elevation zones, which may lead to greater DIC export.
    Description: This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, through the Ocean Frontier Institute. Additional funding was provided by the U.S. Geological Survey (USGS) Coastal & Marine Geology Program and the USGS Land Change Science Program's LandCarbon program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Budy, P., Pennock, C. A., Giblin, A. E., Luecke, C., White, D. L., & Kling, G. W. Understanding the effects of climate change via disturbance on pristine arctic lakes-multitrophic level response and recovery to a 12-yr, low-level fertilization experiment. Limnology and Oceanography. (2021), https://doi.org/10.1002/lno.11893.
    Description: Effects of climate change-driven disturbance on lake ecosystems can be subtle; indirect effects include increased nutrient loading that could impact ecosystem function. We designed a low-level fertilization experiment to mimic persistent, climate change-driven disturbances (deeper thaw, greater weathering, or thermokarst failure) delivering nutrients to arctic lakes. We measured responses of pelagic trophic levels over 12 yr in a fertilized deep lake with fish and a shallow fishless lake, compared to paired reference lakes, and monitored recovery for 6 yr. Relative to prefertilization in the deep lake, we observed a maximum pelagic response in chl a (+201%), dissolved oxygen (DO, −43%), and zooplankton biomass (+88%) during the fertilization period (2001–2012). Other responses to fertilization, such as water transparency and fish relative abundance, were delayed, but both ultimately declined. Phyto- and zooplankton biomass and community composition shifted with fertilization. The effects of fertilization were less pronounced in the paired shallow lakes, because of a natural thermokarst failure likely impacting the reference lake. In the deep lake there was (a) moderate resistance to change in ecosystem functions at all trophic levels, (b) eventual responses were often nonlinear, and (c) postfertilization recovery (return) times were most rapid at the base of the food web (2–4 yr) while higher trophic levels failed to recover after 6 yr. The timing and magnitude of responses to fertilization in these arctic lakes were similar to responses in other lakes, suggesting indirect effects of climate change that modify nutrient inputs may affect many lakes in the future.
    Description: This research was funded and supported by National Science Foundation grants DEB 1026843, 0423385, 0508570, 1026843, and 1637459, and OPP 9911278, and by the Toolik Field Station, managed by the Institute of Arctic Biology at the University of Alaska Fairbanks with cooperative agreement support from the Division of Arctic Sciences of the Office of Polar Programs at NSF. Additional support was provided by the U.S. Geological Survey, Utah Cooperative Fish and Wildlife Research Unit (in-kind), and The Ecology Center at Utah State University (USU).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-09-23
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molino, G. D., Carr, J. A., Ganju, N. K., & Kirwan, M. L. Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. Limnology and Oceanography Letters, 7(4), (2022): 321-331, https://doi.org/10.1002/lol2.10262.
    Description: Sea level rise (SLR) and saltwater intrusion are driving inland shifts in coastal ecosystems. Here, we make high-resolution (1 m) predictions of land conversion under future SLR scenarios in 81 watersheds surrounding Chesapeake Bay, United States, a hotspot for accelerated SLR and saltwater intrusion. We find that 1050–3748 km2 of marsh could be created by 2100, largely at the expense of forested wetlands. Predicted marsh migration exceeds total current tidal marsh area and is ~ 4× greater than historical observations. Anthropogenic land use in marsh migration areas is concentrated within a few watersheds and minimally impacts calculated metrics of marsh resilience. Despite regional marsh area maintenance, local ecosystem service replacement within vulnerable watersheds remains uncertain. However, our work suggests that topography rather than land use drives spatial variability in wetland vulnerability regionally, and that rural land conversion is needed to compensate for extensive areal losses on heavily developed coasts globally.
    Description: This work was funded by the U.S. Geological Survey Climate Research and Development and the U.S. Geological Survey Coastal and Marine Hazards and Resources Program. Additional funding was provided from the National Science Foundation CAREER, LTER, and CZN programs (EAR-1654374, DEB-1832221, and EAR-2012670).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...