ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Highlights • Code comparisons build confidence in simulators to model interdependent processes. • International hydrate reservoir simulators are compared over five complex problems. • Geomechanical processes significantly impact response of gas hydrate reservoirs. • Simulators yielded comparable results, however many differences are noted. • Equivalent constitutive models are required to achieve agreement across simulators. Geologic reservoirs containing gas hydrate occur beneath permafrost environments and within marine continental slope sediments, representing a potentially vast natural gas source. Numerical simulators provide scientists and engineers with tools for understanding how production efficiency depends on the numerous, interdependent (coupled) processes associated with potential production strategies for these gas hydrate reservoirs. Confidence in the modeling and forecasting abilities of these gas hydrate reservoir simulators (GHRSs) grows with successful comparisons against laboratory and field test results, but such results are rare, particularly in natural settings. The hydrate community recognized another approach to building confidence in the GHRS: comparing simulation results between independently developed and executed computer codes on structured problems specifically tailored to the interdependent processes relevant for gas hydrate-bearing systems. The United States Department of Energy, National Energy Technology Laboratory, (DOE/NETL), sponsored the first international gas hydrate code comparison study, IGHCCS1, in the early 2000s. IGHCCS1 focused on coupled thermal and hydrologic processes associated with producing gas hydrates from geologic reservoirs via depressurization and thermal stimulation. Subsequently, GHRSs have advanced to model more complex production technologies and incorporate geomechanical processes into the existing framework of coupled thermal and hydrologic modeling. This paper contributes to the validation of these recent GHRS developments by providing results from a second GHRS code comparison study, IGHCCS2, also sponsored by DOE/NETL. IGHCCS2 includes participants from an international collection of universities, research institutes, industry, national laboratories, and national geologic surveys. Study participants developed a series of five benchmark problems principally involving gas hydrate processes with geomechanical components. The five problems range from simple geometries with analytical solutions to a representation of the world's first offshore production test of methane hydrates, which was conducted with the depressurization method off the coast of Japan. To identify strengths and limitations in the various GHRSs, study participants submitted solutions for the benchmark problems and discussed differing results via teleconferences. The GHRSs evolved over the course of IGHCCS2 as researchers modified their simulators to reflect new insights, lessons learned, and suggested performance enhancements. The five benchmark problems, final sample solutions, and lessons learned that are presented here document the study outcomes and serve as a reference guide for developing and testing gas hydrate reservoir simulators.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • We present the first modern amphibious seismic experiment conducted across Calabria. • The section shows the forearc-to-backarc Vp structure of the subduction system. • We infer mantle exhumation in the Marsili backarc basin, in the Tyrrhenian. • The system is marked by spatially rapid petrological and tectonic changes. • An analog of Tethys subduction systems formed by slab rollback is proposed. Abstract The formation of Cenozoic mountain belts in the Mediterranean realm was preceded by tens of millions of years of subduction, forming volcanic arcs, and frontal contractional systems. In addition, subduction usually involves slab rollback and formation of oceanic backarcs. Although such structure must have influenced the orogeny of Mediterranean mountain belts, no active analog has been mapped with modern crustal-scale seismic methods. Here, we study the entire Calabrian subduction system to map the structure resulting from Tethys lithosphere subduction and slab rollback, in a process that must be akin to that operating during a phase of the formation of the Mediterranean orogenic belts. We present a crustal-scale cross section of the entire Calabrian subduction system obtained from on- and off-shore wide-angle seismic data. The 2D P-wave velocity section shows spatially abrupt (〈5 km of profile distance) structural and petrological transitions from the Ionian sedimentary wedge and Calabrian arc, to the rifted NW Calabrian margin, where the Quaternary Aeolian arc is emplaced. The margin, then, transitions northwards into the Marsili backarc region, where exhumed mantle and localized volcanism occurred during its formation. This complex structure implies rapid temporal and spatial changes between magmatic and amagmatic processes, and between compressional and extensional regimes during the evolution of this subduction system. We find that some terranes involved in the Alpine orogeny share petrological and tectonic similarities with some domains of the Calabrian subduction system. Based on the results of this study we propose the Calabrian Arc system as an analog for the subduction structuration that preceded the formation of Alpine orogenic systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift—grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)—still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977–2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~ 35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: During the period December 2016 to March 2017 the lava dome emplaced in September–November 2016 at Volcán de Colima was partially destroyed by Vulcanian explosions. In particular, 10 moderate-large explosions were observed with heights of 2–6.8 km from the crater and with the generation of pyroclastic density currents (PDCs), shock waves and ballistics. The acoustic and seismic energies were calculated for each event. The values found are similar to other moderate-large Vulcanian explosions observed at other volcanoes, the maximum value of seismic energy was of 1.6 × 109 J and for acoustic energy 7.5 × 108 J. These values were compared with the height of the eruptive column, which resulted in a poor correlation. For the acoustic signals, the reduced pressure was greater than that commonly reported for Vulcanian explosions elsewhere. Using the time or arrival of the acoustic and seismic signals, the depth of the acoustic-seismic source was estimated at 〈310 m for nine explosions. With photogrammetry (SfM method), the volume lost during the excavation of a crater between 5 December and 12 March was estimated, the volume being 9.8 × 105 m3. The total seismic energy released during these dates was 5.7 × 109 J. With these data, a relation between the lost volume and the total seismic energy of 1.6 × 10−4 m3/J was obtained. With this relation, the volume destroyed due to future explosions could be estimated, if the seismic energy release is known.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Highlights • Cadomian continental arc crust of NE Iran was built during ∼15 Myr of magmatism. • Magmatic flare-up in Iran Cadomia occurred over ∼45 Myr; 570 to 525 Ma. • Geochemical differentiation in “hot zones” built the stratified continental crust of Iran. Abstract The generation and differentiation of continental crust by arc magmatism is strongly influenced by episodes of high magmatic flux (“flare-ups”). Magmatic flare-ups encourage the development of deep crustal hot zones where magmatic differentiation and density stratification combine to form the upper felsic and lower mafic continental crust. Such processes, which are responsible for the construction of continental arc crust, are prolonged events, which build a ∼30-40 km arc crust over tens of million years (∼100 Myr). New zircon U-Pb data reveal that the construction of Cadomian crust from NE Iran occurred over ∼15 ± 0.3 Myr. However, compiled zircon U-Pb ages reveal a prolonged magmatic flare-up of ∼45 Myr; ∼570 to 525 Ma. Basement outcrops in NE Iran expose lower- and upper crust that show how magmatic-geochemical differentiation occurred deep beneath a Cadomian continental arc in a crustal hot zone. Isotopic data for igneous rocks produced during this 45 Myr episode reveal interactions between mantle-derived melts and old continental crust. Synthesis of new and published data indicates that this type of interaction is common during periods of high magmatic fluxes. Our results indicate that differentiation of mafic melts in the lower crust during prolonged magmatic flare-ups plays a key role in building a stratified continental crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: The clumped isotope (Δ47) proxy is a promising geochemical tool to reconstruct past ocean temperatures far back in time and in unknown settings, due to its unique thermodynamic basis that renders it independent from other environmental factors like seawater composition. Although previously hampered by large sample-size requirements, recent methodological advances have made the paleoceanographic application of Δ47 on small (〈5 mg) foraminifer samples possible. Previous studies show a reasonable match between Δ47 calibrations based on synthetic carbonate and various species of planktonic foraminifers. However, studies performed before recent methodological advances were based on relatively few species and data treatment that is now outdated. To overcome these limitations and elucidate species-specific effects, we analyzed 14 species of planktonic foraminifers in sediment surface samples from 13 sites, covering a growth temperature range of ∼0–28 °C. We selected mixed layer-dwelling and deep-dwelling species from a wide range of ocean settings to evaluate the feasibility of temperature reconstructions for different water depths. Various techniques to estimate foraminifer calcification temperatures were tested in order to assess their effects on the calibration and to find the most suitable approach. Results from this study generally confirm previous findings that there are no species-specific effects on the Δ47-temperature relationship in planktonic foraminifers, with one possible exception. Various morphotypes of Globigerinoides ruber were found to often deviate from the general trend determined for planktonic foraminifers. Our data are in excellent agreement with a recent foraminifer calibration study that was performed with a different analytical setup, as well as with a calibration based exclusively on benthic foraminifers. A combined, methodologically homogenized dataset also reveals very good agreement with an inorganic calibration based on travertines. Our findings highlight the potential of the Δ47 paleothermometer to be applied to recent and extinct species alike to study surface ocean temperatures as well as thermocline variability for a multitude of settings and time scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Highlights: • Assessment of the Indian Ocean simulation from global forced sea- ice models. • SST biases are 2 times smaller in forced simulations than the coupled simulations. • Coupled model shows large inter-model spread over the eastern equatorial Indian Ocean. • Refinement in model horizontal resolution does not significantly improve simulations. • Uncover a secondary pathway of northward cross-equatorial transport along 75 °E. • Models are unable to capture the observed thick barrier layer in the north Bay of Bengal. Abstract: We present an analysis of annual and seasonal mean characteristics of the Indian Ocean circulation and water masses from 16 global ocean–sea-ice model simulations that follow the Coordinated Ocean-ice Reference Experiments (CORE) interannual protocol (CORE-II). All simulations show a similar large-scale tropical current system, but with differences in the Equatorial Undercurrent. Most CORE-II models simulate the structure of the Cross Equatorial Cell (CEC) in the Indian Ocean. We uncover a previously unidentified secondary pathway of northward cross-equatorial transport along 75 °E, thus complementing the pathway near the Somali Coast. This secondary pathway is most prominent in the models which represent topography realistically, thus suggesting a need for realistic bathymetry in climate models. When probing the water mass structure in the upper ocean, we find that the salinity profiles are closer to observations in geopotential (level) models than in isopycnal models. More generally, we find that biases are model dependent, thus suggesting a grouping into model lineage, formulation of the surface boundary, vertical coordinate and surface salinity restoring. Refinement in model horizontal resolution (one degree versus degree) does not significantly improve simulations, though there are some marginal improvements in the salinity and barrier layer results. The results in turn suggest that a focus on improving physical parameterizations (e.g. boundary layer processes) may offer more near-term advances in Indian Ocean simulations than refined grid resolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Seamount phosphates are increasingly regarded as potential resources for rare earth elements (REE) and plus yttrium (REY). Carbonate fluorapatite (CFA) formed within seamount ferromanganese (FeMn) crusts is the most common seamount phosphate mineral. However, reports on the mineralogy and geochemistry of CFA are few and thus its origin and acquisition of trace elements are not well understood. In this study, we analyzed the major and trace elements of CFA in FeMn crusts collected from Western and Central Pacific seamounts to investigate the genesis of trace elements in the CFA. This is the first study to use in situ analytical techniques such as electron microprobe analyzer (EPMA) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) to analyze seamount CFA. We found that the CFA hosts abundant minor and trace elements and propose that ionic substitutions are responsible for the high contents of SO3, SiO2, REY, Sr, Na, Fe, and Mn in the CFA veins found in the FeMn crusts, i.e., SiO32− and SO42− substitute for PO42−, while REE3+, Y3+, Na+, Fe2+, and Mn2+ substitute for Ca2+. REE3+ substitutions for Ca2+ in the CFA are charge-compensated by Na+ substitution for Ca2+. Fourier transform infrared spectroscopy (FTIR) analysis shows that CO32– mainly substitutes for PO42− in the CFA crystal structure, and there is a minor substitution of PO42− by CO3F3−. Ocean water is the major source of the P and REY, which when precipitated as seamount CFA is characterized by high ∑REE (345 to 6016 ppm) and heavy-REE (HREE) enrichments. Monazite grains dispersed in the seamount CFA contribute trace amount of REY. These results shed light on the composition and element mobility of seamount CFA with economic potential, which also provides valuable insights into global ocean chemical cycling (e.g. REE).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Studies integrating mangrove in-situ observations and remote sensing analysis for specific sites often lack precise estimates of carbon stocks over time frames that include disturbance events. This study quantifies change in mangrove area from 1985 to 2018 with Landsat time series analysis, estimates above and belowground stored carbon using field data, and evaluates aboveground carbon stock changes after the 2004 Category 4, Hurricane Charley, in J.N. “Ding” Darling National Wildlife Refuge. Two allometric equation methods yielding similar results were used to estimate aboveground carbon content in three mangrove species found in the refuge. Aboveground carbon contained 67 (SE = 2) MgC ha−1 with a total refuge estimate of 74,504 MgC in 2018. Sediment contained 259 (SE = 28) MgC ha−1 for a total of 288,008 MgC in the refuge. The initial reduction in mangrove area caused by Hurricane Charley was between 0.6% and 5.3%, equivalent to between 427 MgC and 3,599 MgC under three different scenarios of carbon loss. As a result of the hurricane, approximately 61 ha of mangroves were disturbed, of which 24 ha had recovered by 2018, with 37 ha (~3% of the pre-hurricane mangrove area) still not recovered 14 years after the event. The 37 ha of mangroves that have not recovered are located in a tidally restricted area of the refuge. A longer recovery time in this area will likely result in a greater loss of carbon storage than in the rest of the refuge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Over 100 years after the event, the mechanism of the 1908 Messina tsunami remains unresolved. The up to 12 m runups observed along the coasts of Sicily and Calabria cannot be explained by the coseismic tsunami, so recent studies have proposed a dual earthquake/submarine mass failure (SMF) mechanism. Here we propose a new dual source and use it to simulate tsunami generation with a three-dimensional non-hydrostatic model, coupled to a two-dimensional fully nonlinear and dispersive model, to simulate tsunami propagation to shore. We first reanalyze observations of tsunami arrival times from eyewitnesses acquired shortly after the 1908 event, and a tsunami record at a tide gauge in Malta. Similar to earlier work, this data is used to locate the likeliest tsunami source area by inverse wave ray tracing, but accounting for frequency dispersion effects on wave celerity, uncertainty in reported arrival times, and a time delay between the EQ and SMF triggering. Analyzing the seafloor morphology in this area, we identify a new SMF at the foot of the Fiumefreddo Valley, northeast of Mount Etna. The general location is consistent with earlier studies, however our SMF is much smaller (~2 km3) than, e.g., that of Billi et al. (2008) and is a fairly rigid-block-slump, rather than a translational SMF. We model the block motion and simulate tsunami generation from a dual EQ/SMF source, and its propagation to shore, in higher resolution grids and based on more accurate bathymetry and topography than in earlier work. Runups and travel times agree well with observations, except for runups on either side of the Messina Straits north of the SMF, which are still underpredicted. In the far field, simulations reproduce well the arrival time and initial wave amplitudes at the Malta tide gauge. Our newly parameterized SMF and modeling improve tsunami runups simulated near the SMF location and south of it. However, as with all previous modeling of this event, additional sources are required to explain runups in the northern Messina Straits, which we suggest might be smaller and shallower SMFs located in this area. These will be considered in future work. Highlights • New earthquake/submarine landslide model of the Messina 1908 tsunami strongly suppoorts a dual source mechanism. • Newly identified 2 km3 submarine landslide, off of Mt Etna, is the most likely non-seismic tsunami mechanism. • Improves earlier modeling by using higher resolution topography/bathymetry and grids in state of the art models. • Numerical simulations validated by post event field surveys and, for the first time, Malta tide gauge data. • New work provides strong evidence that additional submarine landslides occurred in the northern Messina Straits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...