ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • 2020-2024  (4)
  • 1995-1999
  • 1965-1969
  • 1960-1964
  • 2020  (4)
Collection
Publisher
Language
Years
  • 2020-2024  (4)
  • 1995-1999
  • 1965-1969
  • 1960-1964
  • 2020-2023  (1)
Year
  • 1
    Publication Date: 2023-02-08
    Description: The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as ‘type material’, thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Code comparisons build confidence in simulators to model interdependent processes. • International hydrate reservoir simulators are compared over five complex problems. • Geomechanical processes significantly impact response of gas hydrate reservoirs. • Simulators yielded comparable results, however many differences are noted. • Equivalent constitutive models are required to achieve agreement across simulators. Geologic reservoirs containing gas hydrate occur beneath permafrost environments and within marine continental slope sediments, representing a potentially vast natural gas source. Numerical simulators provide scientists and engineers with tools for understanding how production efficiency depends on the numerous, interdependent (coupled) processes associated with potential production strategies for these gas hydrate reservoirs. Confidence in the modeling and forecasting abilities of these gas hydrate reservoir simulators (GHRSs) grows with successful comparisons against laboratory and field test results, but such results are rare, particularly in natural settings. The hydrate community recognized another approach to building confidence in the GHRS: comparing simulation results between independently developed and executed computer codes on structured problems specifically tailored to the interdependent processes relevant for gas hydrate-bearing systems. The United States Department of Energy, National Energy Technology Laboratory, (DOE/NETL), sponsored the first international gas hydrate code comparison study, IGHCCS1, in the early 2000s. IGHCCS1 focused on coupled thermal and hydrologic processes associated with producing gas hydrates from geologic reservoirs via depressurization and thermal stimulation. Subsequently, GHRSs have advanced to model more complex production technologies and incorporate geomechanical processes into the existing framework of coupled thermal and hydrologic modeling. This paper contributes to the validation of these recent GHRS developments by providing results from a second GHRS code comparison study, IGHCCS2, also sponsored by DOE/NETL. IGHCCS2 includes participants from an international collection of universities, research institutes, industry, national laboratories, and national geologic surveys. Study participants developed a series of five benchmark problems principally involving gas hydrate processes with geomechanical components. The five problems range from simple geometries with analytical solutions to a representation of the world's first offshore production test of methane hydrates, which was conducted with the depressurization method off the coast of Japan. To identify strengths and limitations in the various GHRSs, study participants submitted solutions for the benchmark problems and discussed differing results via teleconferences. The GHRSs evolved over the course of IGHCCS2 as researchers modified their simulators to reflect new insights, lessons learned, and suggested performance enhancements. The five benchmark problems, final sample solutions, and lessons learned that are presented here document the study outcomes and serve as a reference guide for developing and testing gas hydrate reservoir simulators.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The direct effects of temperature increases and differences among life-history might affect the impacts of native and invasive predators on recipient communities. Comparisons of functional responses can improve our understanding of underlying processes involved in altering species interaction strengths and may predict the effect of species invading new communities. Therefore, we investigated the functional responses of the mourning gecko Lepidodactylus lugubris (Duméril & Bibron, 1836) to explore how temperature, body-size and prey density alter gecko predatory impacts in ecosystems. We quantified the functional responses of juvenile and adult geckos in single-predator experiments at 20, 23 and 26 °C. Both displayed saturating Type-II functional responses, but juvenile functional responses and the novel Functional Response Ratio were positively affected by temperature as juvenile attack rates (a) increased as a function of increased temperature. Handling times (h) tended to shorten at higher temperature for both predator stages. We demonstrate that the effects of temperature on functional responses of geckos differ across ontogeny, perhaps reflecting life-history stages prioritising growth and maturation or body maintenance. This indicates that temperature-dependent gecko predatory impacts will be mediated by population demographics. We advocate further comparisons of functional responses to understand the invasiveness and future predatory impacts of geckos, and other invasive species globally, as temperatures change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-22
    Description: Atmospheric carbon dioxide (CO2) inversions for estimating natural carbon fluxes typically do not allow for adjustment of fossil fuel CO2 emissions, despite significant uncertainties in emission inventories and inadequacies in the specification of international bunker emissions in inversions. Also, most inversions place CO2 release from fossil fuel combustion and biospheric sources entirely at the surface. However, a non-negligible portion of the emissions actually occurs in the form of reduced carbon species, which are eventually oxidized to CO2 downwind. Omission of this 'chemical pump' can result in a significant redistribution of the inferred total carbon fluxes among regions. We assess the impacts of different prescriptions of fossil fuel emissions and accounting for the chemical pump on flux estimation, with a novel aspect of conducting both satellite CO2 observation-based and surface in situ-based inversions. We apply 3-D carbon monoxide (CO) loss rates archived from a state-of-the-art GEOS chemistry and climate model simulation in a forward transport model run to simulate the distribution of CO2 originating from oxidation of carbon species. We also subtract amounts from the prior surface CO2 fluxes that are actually emitted in the form of fossil and biospheric CO, methane, and non-methane volatile organic compounds (VOCs). We find that the posterior large-scale fluxes are generally insensitive to the finer-scale spatial differences between the ODIAC and CDIAC fossil fuel CO2 gridded datasets and assumptions about international bunker emissions. However, accounting for 3-D chemical CO2 production and the surface correction shifts the global carbon sink, e.g. from land to ocean and from the tropics to the north, with a magnitude and even direction that depend on assumptions about the surface correction. A GOSAT satellite-based inversion is more sensitive to the chemical pump than one using in situ observations, exhibiting substantial flux impacts of 0.28, 0.53, and −0.47 Pg C yr−1 over tropical land, global land, and oceans, due to differences in the horizontal and vertical sampling of the two observation types. Overall, the biases from neglecting the chemical pump appear to be minor relative to the flux estimate uncertainties and the differences between the in situ and GOSAT inversions, but their relative importance will grow in the future as observational coverage further increases and satellite retrieval biases decrease.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...