ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Wiley  (4)
  • CERN / Zenodo  (3)
  • American Association for the Advancement of Science
  • Blackwell Publishing Ltd
  • Oxford University Press
  • PANGAEA
  • Springer
  • 2020-2023  (9)
  • 2000-2004
  • 1980-1984
  • 1970-1974
  • 2020  (9)
Sammlung
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Goyert, H., Suca, J. J., Coleman, K., Welch, L., Llopiz, J. K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C., & Steinmetz, H. The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 00, (2020): 1-34, doi:10.1111/faf.12445.
    Beschreibung: The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.
    Beschreibung: This manuscript is the result of follow‐up work stemming from a working group formed at a two‐day multidisciplinary and international workshop held at the Parker River National Wildlife Refuge, Massachusetts in May 2017, which convened 55 experts scientists, natural resource managers and conservation practitioners from 15 state, federal, academic and non‐governmental organizations with interest and expertise in Ammodytes ecology. Support for this effort was provided by USFWS, NOAA Stellwagen Bank National Marine Sanctuary, U.S. Department of the Interior, U.S. Geological Survey, Northeast Climate Adaptation Science Center (Award # G16AC00237), an NSF Graduate Research Fellowship to J.J.S., a CINAR Fellow Award to J.K.L. under Cooperative Agreement NA14OAR4320158, NSF award OCE‐1325451 to J.K.L., NSF award OCE‐1459087 to J.A.R, a Regional Sea Grant award to H.B. (RNE16‐CTHCE‐l), a National Marine Sanctuary Foundation award to P.J.A. (18‐08‐B‐196) and grants from the Mudge Foundation. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the National Oceanographic and Atmospheric Administration, U.S. Fish and Wildlife Service, New England Fishery Management Council and Mid‐Atlantic Fishery Management Council. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Schlagwort(e): Ammodytes ; ecosystem‐based management ; forage fish ; life history ; sand lance ; trophic ecology
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-03-21
    Beschreibung: This archive provides the model result of the AbuMIP experiments: The Antarctic BUttressing Model Intercomparison Project.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/workingPaper
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lasek-Nesselquist, E., & Johnson, M. D. A phylogenomic approach to clarifying the relationship of Mesodinium within the Ciliophora: a case study in the complexity of mixed-species transcriptome analyses. Genome Biology and Evolution, 11(11), (2019): 3218–3232, doi:10.1093/gbe/evz233.
    Beschreibung: Recent high-throughput sequencing endeavors have yielded multigene/protein phylogenies that confidently resolve several inter- and intra-class relationships within the phylum Ciliophora. We leverage the massive sequencing efforts from the Marine Microbial Eukaryote Transcriptome Sequencing Project, other SRA submissions, and available genome data with our own sequencing efforts to determine the phylogenetic position of Mesodinium and to generate the most taxonomically rich phylogenomic ciliate tree to date. Regardless of the data mining strategy, the multiprotein data set, or the molecular models of evolution employed, we consistently recovered the same well-supported relationships among ciliate classes, confirming many of the higher-level relationships previously identified. Mesodinium always formed a monophyletic group with members of the Litostomatea, with mixotrophic species of Mesodinium—M. rubrum, M. major, and M. chamaeleon—being more closely related to each other than to the heterotrophic member, M. pulex. The well-supported position of Mesodinium as sister to other litostomes contrasts with previous molecular analyses including those from phylogenomic studies that exploited the same transcriptomic databases. These topological discrepancies illustrate the need for caution when mining mixed-species transcriptomes and indicate that identifying ciliate sequences among prey contamination—particularly for Mesodinium species where expression from stolen prey nuclei appears to dominate—requires thorough and iterative vetting with phylogenies that incorporate sequences from a large outgroup of prey.
    Beschreibung: We thank David Beaudoin and Holly V. Moeller for their assistance in collecting cells and extracting RNA. We thank the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution at the Marine Biological Laboratory for the generous use of their servers. This work was supported in part by a National Science Foundation grant to both authors (IOS 1354773).
    Schlagwort(e): Mesodinium ; Litostomatea ; ciliate phylogenomics ; mixed-species transcriptomes ; sequence contamination
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chapman, A. S. A., Beaulieu, S. E., Colaco, A., Gebruk, A. V., Hilario, A., Kihara, T. C., Ramirez-Llodra, E., Sarrazin, J., Tunnicliffe, V., Amon, D. J., Baker, M. C., Boschen-Rose, R. E., Chen, C., Cooper, I. J., Copley, J. T., Corbari, L., Cordes, E. E., Cuvelier, D., Duperron, S., Du Preez, C., Gollner, S., Horton, T., Hourdez, S., Krylova, E. M., Linse, K., LokaBharathi, P. A., Marsh, L., Matabos, M., Mills, S. W., Mullineaux, L. S., Rapp, H. T., Reid, W. D. K., Rybakova (Goroslavskaya), E., Thomas, T. R. A., Southgate, S. J., Stohr, S., Turner, P. J., Watanabe, H. K., Yasuhara, M., & Bates, A. E. sFDvent: a global trait database for deep-sea hydrothermal-vent fauna. Global Ecology and Biogeography, 28(11), (2019): 1538-1551, doi: 10.1111/geb.12975.
    Beschreibung: Motivation Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).
    Beschreibung: We would like to thank the following experts, who are not authors on this publication but made contributions to the sFDvent database: Anna Metaxas, Alexander Mironov, Jianwen Qiu (seep species contributions, to be added to a future version of the database) and Anders Warén. We would also like to thank Robert Cooke for his advice, time, and assistance in processing the raw data contributions to the sFDvent database using R. Thanks also to members of iDiv and its synthesis centre – sDiv – for much‐valued advice, support, and assistance during working‐group meetings: Doreen Brückner, Jes Hines, Borja Jiménez‐Alfaro, Ingolf Kühn and Marten Winter. We would also like to thank the following supporters of the database who contributed indirectly via early design meetings or members of their research groups: Malcolm Clark, Charles Fisher, Adrian Glover, Ashley Rowden and Cindy Lee Van Dover. Finally, thanks to the families of sFDvent working group members for their support while they were participating in meetings at iDiv in Germany. Financial support for sFDvent working group meetings was gratefully received from sDiv, the Synthesis Centre of iDiv (DFG FZT 118). ASAC was a PhD candidate funded by the SPITFIRE Doctoral Training Partnership (supported by the Natural Environmental Research Council, grant number: NE/L002531/1) and the University of Southampton at the time of submission. ASAC also thanks Dominic, Lesley, Lettice and Simon Chapman for their support throughout this project. AEB and VT are sponsored through the Canada Research Chair Programme. SEB received support from National Science Foundation Division of Environmental Biology Award #1558904 and The Joint Initiative Awards Fund from the Andrew W. Mellon Foundation. AC is supported by Program Investigador (IF/00029/2014/CP1230/CT0002) from Fundação para a Ciência e a Tecnologia (FCT). This study also had the support of Fundação para a Ciência e a Tecnologia, through the strategic project UID/MAR/04292/2013 granted to marine environmental sciences centre. Data compiled by AVG and EG were supported by Russian science foundation Grant 14‐50‐00095. AH was supported by the grant BPD/UI88/5805/2017 awarded by CESAM (UID/AMB/50017), which is financed by FCT/Ministério da Educação through national funds and co‐funded by fundo Europeu de desenvolvimento regional, within the PT2020 Partnership Agreement and Compete 2020. ERLL was partially supported by the MarMine project (247626/O30). JS was supported by Ifremer. Data on vent fauna from the East Scotia Ridge, Mid‐Cayman Spreading Centre, and Southwest Indian Ridge were obtained by UK natural environment research council Grants NE/D01249X/1, NE/F017774/1 and NE/H012087/1, respectively. REBR's contribution was supported by a Postdoctoral Fellowship at the University of Victoria, funded by the Canadian Healthy Oceans Network II Strategic Research Program (CHONe II). DC is supported by a post‐doctoral scholarship (SFRH/BPD/110278/2015) from FCT. HTR was supported by the Research Council of Norway through project number 70184227 and the KG Jebsen Centre for Deep Sea Research (University of Bergen). MY was partially supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (project codes: HKU 17306014, HKU 17311316).
    Schlagwort(e): biodiversity ; collaboration ; conservation ; cross‐ecosystem ; database ; deep sea ; functional trait ; global‐scale ; hydrothermal vent ; sFDvent
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-24
    Beschreibung: The relation between macroseismic intensity and ground shaking makes it possible to transform instrumental Ground Motion Parameters (GMPs) in macroseismic intensity and vice versa, and is therefore useful for making comparisons between estimates of seismic hazard determined in terms of GMPs and macroseismic intensity, and for other engineering and seismological applications. Empirical relationships between macroseismic intensity and different recorded GMPs for the Italian territory are presented in this paper. The coefficients are calibrated using a dataset of horizontal geometrical mean GMPs, i.e. peak ground acceleration (PGA), peak ground velocity (PGV), spectral acceleration (SA) at 0.2, 0.3, 1.0 and 2.0 s from the ITalian ACcelerometric Archive (ITACA; Luzi et al. 2019), and macroseismic intensity at Mercalli-Cancani-Sieberg (MCS) scale from the database DBMI15 (Locati et al. 2019). A dataset was obtained that corresponds to 240 pairs of macroseismic intensity-GMPs from 67 Italian earthquakes in the time window 1972-2016 with moment magnitude ranging from 4.2 to 6.8 and macroseismic intensity in the range [2, 10-11]. The final dataset is developed correlating strong motion stations and macroseismic intensity observations generally within 2 km from each other, but the associations is manually validated through the expert opinion. The adopted functional form is non-linear predicting macroseismic intensity as a function of LogGMPs and vice versa by performing separate regressions. The set of empirical conversion relationships GMP-I MCS -GMP and the associated standard deviations are compared with previous models. The results of an illustrative PSHA, obtained using a new seismogenic zonation (Santulin et al. 2017), proposed as one of the inputs of the new Italian seismic hazard model (Meletti et al. 2017), are used to analyse and compare seismic hazard assessment in terms of PGA and the related seismic hazard map in terms of macroseismic intensity (MCS) obtained using the empirical relationships here proposed for the PGA.
    Beschreibung: Published
    Beschreibung: 5143–5164
    Beschreibung: 6T. Studi di pericolosità sismica e da maremoto
    Beschreibung: JCR Journal
    Schlagwort(e): macroseismic ; intensity ; groundmotionparameters ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ralston, D. K., Yellen, B., Woodruff, J. D., & Fernald, S. Turbidity hysteresis in an estuary and tidal river following an extreme discharge event. Geophysical Research Letters, 47(15), (2020): e2020GL088005, doi:10.1029/2020GL088005.
    Beschreibung: Nonlinear turbidity‐discharge relationships are explored in the context of sediment sourcing and event‐driven hysteresis using long‐term (≥12‐year) turbidity observations from the tidal freshwater and saline estuary of the Hudson River. At four locations spanning 175 km, turbidity generally increased with discharge but did not follow a constant log‐log dependence, in part due to event‐driven adjustments in sediment availability. Following major sediment inputs from extreme precipitation and discharge events in 2011, turbidity in the tidal river increased by 20–50% for a given discharge. The coherent shifts in the turbidity‐discharge relationship along the tidal river over the subsequent 2 years suggest that the 2011 events increased sediment availability for resuspension. In the saline estuary, changes in the sediment‐discharge relationship were less apparent after the high discharge events, indicating that greater background turbidity due to internal sources make event‐driven inputs less important in the saline estuary at interannual time scales.
    Beschreibung: This work was sponsored by the National Estuarine Research Reserve System Science Collaborative, funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145), with additional support to Yellen and Woodruff from USGS Cooperative Agreement No. G19AC00091.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.
    Beschreibung: Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.
    Beschreibung: We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs).
    Schlagwort(e): baleen whales ; changes in distribution ; conservation ; North Atlantic Ocean ; passive acoustic monitoring ; seasonal occurrence
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-03-21
    Beschreibung: pycascades - a software package to simulate dynamics of tipping cascades on complex networks. This first release of pycascades goes along with the submission of the model description paper.
    Materialart: info:eu-repo/semantics/other
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-03-21
    Beschreibung: This archive provides the scripts and routines used as part of the publication "ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century", published in The Cryosphere, https://tc.copernicus.org/articles/14/3033/2020/
    Materialart: info:eu-repo/semantics/other
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...