ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
  • 2015-2019
  • 1960-1964
  • 2020  (2)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Longnecker, K., Oswald, L., Soule, M. C. K., Cutter, G. A., & Kujawinski, E. B. Organic sulfur: a spatially variable and understudied component of marine organic matter. Limnology and Oceanography Letters, (2020), doi:10.1002/lol2.10149.
    Description: Sulfur (S) is a major heteroatom in organic matter. This project evaluated spatial variability in the concentration and molecular‐level composition of organic sulfur along gradients of depth and latitude. We measured the concentration of total organic sulfur (TOS) directly from whole seawater. Our data reveal high variability in organic sulfur, relative to established variability in total organic carbon or nitrogen. The deep ocean contained significant amounts of organic sulfur, and the concentration of TOS in North Atlantic Deep Water (NADW) decreased with increasing age while total organic carbon remained stable. Analysis of dissolved organic matter extracts by ultrahigh resolution mass spectrometry revealed that 6% of elemental formulas contained sulfur. The sulfur‐containing compounds were structurally diverse, and showed higher numbers of sulfur‐containing elemental formulas as NADW moved southward. These measurements of organic sulfur in seawater provide the foundation needed to define the factors controlling organic sulfur in the global ocean.
    Description: We thank Catherine Carmichael, Winifred Johnson, and Gretchen Swarr for assistance with sample collection and processing, and Joe Jennings for the analysis of inorganic nutrients. The help of the captain and crew of the R/V Knorr and the other cruise participants during the “DeepDOM” cruise is appreciated. Two anonymous reviewers and Patricia Soranno provided thorough comments that greatly improved the manuscript. The ultrahigh resolution mass spectrometry samples were analyzed at the WHOI FT‐MS Users' Facility that is funded by the National Science Foundation (grant OCE‐0619608) and the Gordon and Betty Moore Foundation (GMBF1214). This project was funded by NSF grants OCE‐1154320 (to EBK and KL), the W.M. Marquet Award (to KL), and OCE‐1435708 (to GAC). The authors declare no conflicts of interest.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in German, C. R., Resing, J. A., Xu, G., Yeo, I. A., Walker, S. L., Devey, C. W., Moffett, J. W., Cutter, G. A., Hyvernaud, O., & Reymond, D. Hydrothermal activity and seismicity at teahitia seamount: Reactivation of the society islands hotspot? Frontiers in Marine Science, 7, (2020): 73, doi:10.3389/fmars.2020.00073.
    Description: Along mid-ocean ridges, submarine venting has been found at all spreading rates and in every ocean basin. By contrast, intraplate hydrothermal activity has only been reported from five locations, worldwide. Here we extend the time series at one of those sites, Teahitia Seamount, which was first shown to be hydrothermally active in 1983 but had not been revisited since 1999. Previously, submersible investigations had led to the discovery of low-temperature (≤30°C) venting associated with the summit of Teahitia Seamount at ≤1500 m. In December 2013 we returned to the same site at the culmination of the US GEOTRACES Eastern South Tropical Pacific (GP16) transect and found evidence for ongoing venting in the form of a non-buoyant hydrothermal plume at a depth of 1400 m. Multi-beam mapping revealed the same composite volcano morphology described previously for Teahitia including four prominent cones. The plume overlying the summit showed distinct in situ optical backscatter and redox anomalies, coupled with high concentrations of total dissolvable Fe (≤186 nmol/L) and Mn (≤33 nmol/L) that are all diagnostic of venting at the underlying seafloor. Continuous seismic records from 1986-present reveal a ∼15 year period of quiescence at Teahitia, following the seismic crisis that first stimulated its submersible-led investigation. Since 2007, however, the frequency of seismicity at Teahitia, coupled with the low magnitude of those events, are suggestive of magmatic reactivation. Separately, distinct seismicity at the adjacent Rocard seamount has also been attributed to submarine extrusive volcanism in 2011 and in 2013. Theoretical modeling of the hydrothermal plume signals detected suggest a minimum heat flux of 10 MW at the summit of Teahitia. Those model simulations can only be sourced from an area of low-temperature venting such as that originally reported from Teahitia if the temperature of the fluids exiting the seabed has increased significantly, from ≤30°C to ∼70°C. These model seafloor temperatures and our direct plume observations are both consistent with reports from Loihi Seamount, Hawaii, ∼10 year following an episode of seafloor volcanism. We hypothesize that the Society Islands hotspot may be undergoing a similar episode of both magmatic and hydrothermal reactivation.
    Description: Field work for this project was funded through NSF Awards to CG (OCE-1130870), JR (OCE-1237011), GC (OCE-1130245), and JM (OCE-1131731). Post-cruise, additional support was provided through NOAA Cooperative Agreement NA15OAR432006 and funding from WHOI and GEOMAR Helmholtz Centre for Ocean Research Kiel. The Réseau Sismique Polynésie was supported at LDG by the Commissariat à l’Energie Atomique et aux Energies Renouvelables. Open Access publication charges for this paper were provided by the Schmidt Ocean Institute.
    Keywords: hydrothermal ; seamount ; hotspot ; Teahitia ; Tahiti ; Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...