ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Springer  (2)
  • American Chemical Society (ACS)
  • Cell Press
  • Nature Publishing Group
  • PANGAEA
  • 2020-2024  (3)
  • 2020-2023
  • 2010-2014
  • 1965-1969
  • 1955-1959
  • 1950-1954
  • 2020  (3)
  • 2020  (3)
  • 1
    Publication Date: 2023-02-08
    Description: Purpose of Review: Assessment of the impact of ocean resolution in Earth System models on the mean state, variability, and future projections and discussion of prospects for improved parameterisations to represent the ocean mesoscale. Recent Findings: The majority of centres participating in CMIP6 employ ocean components with resolutions of about 1 degree in their full Earth System models (eddy-parameterising models). In contrast, there are also models submitted to CMIP6 (both DECK and HighResMIP) that employ ocean components of approximately 1/4 degree and 1/10 degree (eddy-present and eddy-rich models). Evidence to date suggests that whether the ocean mesoscale is explicitly represented or parameterised affects not only the mean state of the ocean but also the climate variability and the future climate response, particularly in terms of the Atlantic meridional overturning circulation (AMOC) and the Southern Ocean. Recent developments in scale-aware parameterisations of the mesoscale are being developed and will be included in future Earth System models. Summary: Although the choice of ocean resolution in Earth System models will always be limited by computational considerations, for the foreseeable future, this choice is likely to affect projections of climate variability and change as well as other aspects of the Earth System. Future Earth System models will be able to choose increased ocean resolution and/or improved parameterisation of processes to capture physical processes with greater fidelity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The interdisciplinary exchange in climate engineering research offers a unique opportunity to make assumptions more explicit for such research projects. While making assumptions explicit is the standard in all disciplinary sciences, some assumptions in the context of societal challenges can only be usefully unveiled, discussed, and verified from the perspective of other research disciplines. Results from successful interdisciplinary collaborations are then more accessible and more generalizable to actors beyond the confines of the academic community. We aim to illustrate how interdisciplinary exchange helps to unveil assumptions in research endeavors and why this is important for successful interdisciplinary collaborations. We therefore follow different stages of the German Priority Program on Climate Engineering (SPP 1689), which we use as an example case of a successful interdisciplinary project. SPP 1689 focused on risks, challenges, and opportunities of Climate Engineering from the perspectives of numerous disciplines. Major results were that the initial assessments of technologies had to be sobered, the consideration of trade-offs is crucial for the potential assessment, and governance issues appeared larger than previously considered. From the reflections of SPP 1689, we conclude with three lessons learned: (1) The project profited from egalitarian organizational structures and communicative practices, preventing the predominance from single disciplines. (2) Within the project continuous efforts were undertaken to foster interdisciplinary understanding. In addition, the flexible project structure allowed for the accommodation of research needs arising as a result of these exchanges. (3) SPP 1689 offered early career researchers a platform for professional exchange on common challenges and best practices of being a part of an interdisciplinary research project.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The health of the ocean, central to human well-being, has now reached a critical point. Most fish stocks are overexploited, climate change and increased dissolved carbon dioxide are changing ocean chemistry and disrupting species throughout food webs, and the fundamental capacity of the ocean to regulate the climate has been altered. However, key technical, organizational, and conceptual scientific barriers have prevented the identification of policy levers for sustainability and transformative action. Here, we recommend key strategies to address these challenges, including (1) stronger integration of sciences and (2) ocean-observing systems, (3) improved science-policy interfaces, (4) new partnerships supported by (5) a new ocean-climate finance system, and (6) improved ocean literacy and education to modify social norms and behaviors. Adopting these strategies could help establish ocean science as a key foundation of broader sustainability transformations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...