ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (3)
  • 2020  (3)
Collection
Years
  • 2020-2022  (3)
Year
  • 1
    Publication Date: 2020-04-22
    Description: The purpose of the study was to effectively treat algae bloomed water while using a Ti-based coagulant (TiCl4) and recover photoactive novel anatase TiO2 from the flocculated sludge. Conventional jar tests were conducted in order to evaluate the coagulation efficiency, and TiCl4 was found superior compared to commercially available poly aluminum chloride (PAC). At a dose of 0.3 g Ti/L, the removal rate of turbidity, chemical oxygen demand (COD), and total phosphorus (TP) were measured as 99.8%, 66.7%, and 96.9%, respectively. Besides, TiO2 nanoparticles (NPs) were recovered from the flocculated sludge and scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and X-ray diffraction (XRD) analysis confirmed the presence of only anatase phase. The recovered TiO2 was found to be effective in removing gaseous CH3CHO and NOx under UV-A lamp at a light intensity of 10 W/m2. Additionally, the TiO2 mixed mortar blocks that were prepared in this study successfully removed atmospheric nitrogen oxide (NOx) under UV irradiance. This study is one of the first to prepare anatase TiO2 from flocculated algal sludge and it showed promising results. Further research on this novel TiO2 concerning internal chemical bonds and shift in the absorbance spectrum could explore several practical implications.
    Electronic ISSN: 2073-4344
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-12
    Description: Rechargeable lithium–sulfur batteries (LSBs) are emerging as some of the most promising next-generation battery alternatives to state-of-the-art lithium-ion batteries (LIBs) due to their high gravimetric energy density, being inexpensive, and having an abundance of elemental sulfur (S8). However, one main, well-known drawback of LSBs is the so-called polysulfide shuttling, where the polysulfide dissolves into organic electrolytes from sulfur host materials. Numerous studies have shown the ability of porous carbon as a sulfur host material. Porous carbon can significantly impede polysulfide shuttling and mitigate the insulating passivation layers, such as Li2S, owing to its intrinsic high electrical conductivity. This work suggests a scalable and straightforward one-step synthesis method to prepare a unique interconnected microporous and mesoporous carbon framework via salt templating with a eutectic mixture of LiI and KI at 800 °C in an inert atmosphere. The synthesis step used environmentally friendly water as a washing solvent to remove salt from the carbon–salt mixture. When employed as a sulfur host material, the electrode exhibited an excellent capacity of 780 mAh g−1 at 500 mA g−1 and a sulfur loading mass of 2 mg cm−2 with a minor capacity loss of 0.36% per cycle for 100 cycles. This synthesis method of a unique porous carbon structure could provide a new avenue for the development of an electrode with a high retention capacity and high accommodated sulfur for electrochemical energy storage applications.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-19
    Description: Titania nanotube was prepared from sludge generated TiO2 (S-TNT) through a modified hydrothermal route and successfully composited with graphitic carbon nitride (g-CN) through a simple calcination step. Advanced characterization techniques such as X-ray diffraction, scanning and transmission electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, UV/visible diffuse reflectance spectroscopy, and photoluminescence analysis were utilized to characterize the prepared samples. A significant improvement in morphological and optical bandgap was observed. The effective surface area of the prepared composite increased threefold compared with sludge generated TiO2. The optical bandgap was narrowed to 3.00 eV from 3.18 in the pristine sludge generated TiO2 nanotubes. The extent of photoactivity of the prepared composites was investigated through photooxidation of NOx in a continuous flow reactor. Because of extended light absorption of the as-prepared composite, under visible light, 19.62% of NO removal was observed. On the other hand, under UV irradiation, owing to bandgap narrowing, although the light absorption was compromised, the impact on photoactivity was compensated by the increased effective surface area of 153.61 m2/g. Hence, under UV irradiance, the maximum NO removal was attained as 32.44% after 1 h of light irradiation. The proposed facile method in this study for the heterojunction of S-TNT and g-CN could significantly contribute to resource recovery from water treatment plants and photocatalytic atmospheric pollutant removal.
    Electronic ISSN: 2073-4344
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...