ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Mixotrophic organisms are increasingly recognized as important components of ecosystems, but the factors controlling their nutrition pathways (in particular their autotrophy-heterotrophy balance) are little known. Both autotrophy and heterotrophy are expected to respond to density-dependent mechanisms but not necessarily in the same direction and/or strength. We hypothesize that the autotrophy-heterotrophy balance of mixotrophic organisms might therefore be a function of population densities. To investigate this relationship, we sampled mixotrophic jellyfish holobionts (host, Mastigias papua etpisoni; symbiont, Cladocopium sp.) in a marine lake (Palau, Micronesia) on six occasions (from 2010 to 2018). Over this period, population densities varied similar to 100 fold. We characterized the nutrition of the holobionts using the delta C-13 and delta N-15 signatures as well as C:N ratios. delta C-13 values increased and delta N-15 values decreased with increasing population densities (respectively, R-2 = 0.86 and 0.70, P 〈 0.05). Although less distinct, C:N ratios increased with increasing population densities (R-2 = 0.59, 0.1 〉 P 〉 0.05). This indicates that the autotrophy-heterotrophy balance tends toward autotrophy when population densities increase. We propose that the availability of zooplanktonic prey is the main driver of this pattern. These results demonstrate that the autotrophy-heterotrophy balance of mixotrophic jellyfishes can be tightly regulated by density-dependent mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The major part of dissolved iron (DFe) in seawater is bound to organic matter, which prevents iron from adsorptive removal by sinking particles and essentially regulates the residence time of DFe and its availability for marine biota. Characteristics of iron‐binding ligands highly depend on their biological origin and physico‐chemical properties of seawater which may intensely alter under ongoing climate change. To understand environmental controls on the iron binding, we applied a function of pH and dissolved organic carbon (DOC) to describe changes in the binding strength of organic ligands in a global biogeochemical model (REcoM). This function was derived based on calculations using a thermodynamic chemical speciation model NICA. This parameterization considerably improved the modeled DFe distribution, particularly in the surface Pacific and the global mesopelagic and deep waters, compared to our previous model simulations with a constant ligand or one prognostic ligand. This indicates that the organic binding of iron is apparently controlled by seawater pH in addition to its link to organic matter. We tested further the response of this control to environmental changes in a simulation with future pH of a high emission scenario. The response of the binding potential shows a complex pattern in different regions and is regulated by factors that have opposite effects on the binding potential. The relative contributions of these factors can change over time by a continual change of environmental conditions. A dynamic feedback system therefore needs to be considered to predict the marine iron cycle under ongoing climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m−2, or -2.0 to -0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds. Key Points: - An assessment of multiple lines of evidence supported by a conceptual model provides ranges for aerosol radiative forcing of climate change - Aerosol effective radiative forcing is assessed to be between -1.6 and -0.6 W m−2 at the 16–84% confidence level - Although key uncertainties remain, new ways of using observations provide stronger constraints for models
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Controls on the deformation pattern (shortening mode and tectonic style) of orogenic forelands during lithospheric shortening remain poorly understood. Here, we use high-resolution 2D thermomechanical models to demonstrate that orogenic crustal thickness and foreland lithospheric thickness significantly control the shortening mode in the foreland. Pure-shear shortening occurs when the orogenic crust is not thicker than the foreland crust or thick, but the foreland lithosphere is thin (〈70–80 km, as in the Puna foreland case). Conversely, simple-shear shortening, characterized by foreland underthrusting beneath the orogen, arises when the orogenic crust is much thicker. This thickened crust results in high gravitational potential energy in the orogen, which triggers the migration of deformation to the foreland under further shortening. Our models present fully thick-skinned, fully thin-skinned, and intermediate tectonic styles in the foreland. The first tectonics forms in a pure-shear shortening mode whereas the others require a simple-shear mode and the presence of thick (〉∼4 km) sediments that are mechanically weak (friction coefficient 〈∼0.05) or weakened rapidly during deformation. The formation of fully thin-skinned tectonics in thick and weak foreland sediments, as in the Subandean Ranges, requires the strength of the orogenic upper lithosphere to be less than one-third as strong as that of the foreland upper lithosphere. Our models successfully reproduce foreland deformation patterns in the Central and Southern Andes and the Laramide province.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Invasive aquatic macrophytes tend to reproduce and spread through vegetative means, often via fragmentary propagules. Dispersal among aquatic sites may occur overland via attachment to various vectors, or within river systems by directional water currents. However, for many species the relationship between fragment size and resumption of growth is unknown. Here, we assessed resumption of growth of apical and mid-stem fragments of invasive Crassula helmsii, Elodea canadensis and Lagarosiphon major. Proportionally, apical fragments tended to more readily resume growth than mid-stem sections, especially for E. canadensis and L. major (80–100%). However, viability did not scale linearly with increasing fragment size, which suggests that fragment size is not a singular determinant of propagule fitness. Nevertheless, longer fragments generally produced greater numbers of shoots and roots, but root production significantly differed among species and was determined through an interaction between plant section, species and fragment length. Overall, all species produced new shoots and roots from fragments as small as 10 mm. C. helmsii mid-stem fragments standardised by node counts did not display new growth (up to 10 nodes), while E. canadensis tended to show greater shoot and root production with increasing node counts. It is evident that a medium to high proportion of small fragmentary propagules of these invasive macrophytes can retain viability. These data have clear implications for understanding the dispersal of these invasive species and their management. Specifically, cutting and dredging may increase rather than decrease infestations, especially in downstream directions. Thus, in the absence of adequate fragment containment, current short-term control strategies may in fact be counterproductive.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-19
    Print ISSN: 1742-464X
    Electronic ISSN: 1742-4658
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...