ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.06. Seismology  (3)
  • 2020-2023  (3)
  • 1990-1994
  • 2021  (3)
  • 2020
Collection
Publisher
Years
Year
  • 2021  (3)
  • 2020
  • 1
    Publication Date: 2021-11-29
    Description: The geological evolution of the western Mediterranean exhibits complicated interactions between orogenic processes and widespread extensional tectonics. The region is located in a convergent plate margin separating Africa and Europe, and consists of marine basins – the Alboran Sea, the Algerian- Provençal Basin, the Valencia trough, the Ligurian Sea and the Tyrrhenian Sea- which formed as back-arc basins since the Oligocene. In most reconstructions, it has been stressed that back-arc extension led to drifting of continental blocks and to large-scale block rotations. The opening of the Ligurian Sea. is in fact the result of counterclockwise rotation of Corsica and Sardinia. From the point of view of seismicity, the south western Alps and northern part of the Ligurian basin are subject to frequent earthquakes of low to moderate magnitudes. However significantly destructive events are known to have occurred in the past (e.g. 1564 and 1887). Apart from these rare large events, regional studies agree in concluding that the important local microseismicity appears to be poorly focused (e.g., COURBOULEX et alii, 2007) and that, if some tectonic lines are documented onland (COURBOULEX et alii, 2001), the active structures at sea remain unknown. It is therefore an essential prerequisite to gain better insight into the deep seismogenic structures along the North Ligurian margin and even farther offshore, in the identified oceanic domain. The fact that some of these structures can undergo ruptures of Mw~6.5, such as the 1887 event (BAKUN & SCOTTI, 2006), suggests that, at least to some extent, instrumental insufficiencies in the detection and location of microseismicity is a limit to identify active faults that have not experienced large instrumented ruptures to date. The irregular coverage provided by regional seismic networks produces a bias in the recording of local seismicity. Permanent stations are naturally limited to land areas and fail to properly constrain seismicity offshore. Taking into consideration the peculiarities of regional dynamics (low strain rates, rare large events and a regular seismic activity limited to small events with M 〈 3-4), even onshore seismicity is insufficiently covered by permanent networks and requires dense temporary instrumenting by mobile stations. Considering the potential threat of strong offshore earthquakes, it is of first importance to characterize faults that are prone to rupture in order to quantify associated seismic and tsunami hazards. Assuming some weak seismicity exists along these faults and remains undetected by onland networks, some marine stations are necessary to address instrumental remoteness and help delineate active structures. Moreover, since the velocity models used for locations are obtained by inverting seismic data and the reliability of their locations depend, in turn, from the quality of the velocity model used for their hypocentral parameters, the constraints on the seismic path provided by a more dense seismic network may contribute to a more accurate reference model. In this study, we profited from the recent developments in sea bottom seismic instrumentation to deploy OBSs above the zones of the North Ligurian to perform seismic shots and obtain the distribution of seismic velocities with 3D active tomography. We also took the opportunity of the long term (6 months) OBSs reduced array to decrease both the detection threshold and recording distances so as to obtain more complete catalogs and better localisations.
    Description: Published
    Description: 789-791
    Description: 1T. Struttura della Terra
    Description: N/A or not JCR
    Keywords: 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-22
    Description: The comparison between crustal stress and surface strain azimuthal patterns has provided new insights into several complex tectonic settings worldwide. Here, we performed such a comparison for Egypt taking into account updated datasets of seismological and geodetic observations. In north-eastern Egypt, the stress field shows a fan-shaped azimuthal pattern with a WNW–ESE orientation on the Cairo region, which progressively rotated to NW–SE along the Gulf of Aqaba. The stress field shows a prevailing normal faulting regime, however, along the Sinai/Arabia plate boundary it coexists with a strike–slip faulting one (σ1 ≅ σ2 〉 σ3), while on the Gulf of Suez, it is characterized by crustal extension occurring on near-orthogonal directions (σ1 〉 σ2 ≅ σ3). On the Nile Delta, the maximum horizontal stress (SHmax) pattern shows scattered orientations, while on the Aswan region, it has a WNW–ESE strike with pure strike–slip features. The strain-rate field shows the largest values along the Red Sea and the Sinai/Arabia plate boundary. Crustal stretching (up to 40 nanostrain/yr) occurs on these areas with WSW–ENE and NE–SW orientations, while crustal contraction occurs on northern Nile Delta (10 nanostrain/yr) and offshore (~35 nanostrain/yr) with E–W and N–S orientations, respectively. The comparison between stress and strain orientations over the investigated area reveals that both patterns are near-parallel and driven by the same large-scale tectonic processes.
    Description: This research was partially funded by the Programa Operativo FEDER Andalucía 2014-2020—A call made by the University of Jaén 2018.
    Description: Published
    Description: 1398
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: strain ; stress ; GNSS ; Egypt ; 04.03. Geodesy ; 04. Solid Earth ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-23
    Description: A comparative analysis of geodetic versus seismic moment-rate estimations makes it possible to distinguish between seismic and aseismic deformation, define the style of deformation, and also to reveal potential seismic gaps. This analysis has been performed for Egypt where the present-day tectonics and seismicity result from the long-lasting interaction between the Nubian, Eurasian, and Arabian plates. The data used comprises all available geological and tectonic information, an updated Poissonian earthquake catalog (2200 B.C.–2020 A.D.) including historical and instrumental datasets, a focal-mechanism solutions catalog (1951–2019), and crustal geodetic strains from Global Navigation Satellite System (GNSS) data. The studied region was divided into ten (EG-01 to EG-10) crustal seismic sources based mainly on seismicity, focal mechanisms, and geodetic strain characteristics. The delimited seismic sources cover the Gulf of Aqaba–Dead Sea Transform Fault system, the Gulf of Suez–Red Sea Rift, besides some potential seismic active regions along the Nile River and its delta. For each seismic source, the estimation of seismic and geodetic moment-rates has been performed. Although the obtained results cannot be considered to be definitive, among the delimited sources, four of them (EG-05, EG-06, EG-08, and EG-10) are characterized by low seismic-geodetic moment-rate ratios (〈20%), reflecting a prevailing aseismic behavior. Intermediate moment-rate ratios (from 20% to 60%) have been obtained in four additional zones (EG-01, EG-04, EG-07, and EG-09), evidencing how the seismicity accounts for a minor to a moderate fraction of the total deformational budget. In the other two sources (EG-02 and EG-03), high seismic-geodetic moment-rates ratios (〉60%) have been observed, reflecting a fully seismic deformation
    Description: This research has been partially funded in the frame of the Programa Operativo FEDER Andalucía 2014–2020-call made by the University of Jaén, 2018.
    Description: Published
    Description: 7836
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Seismicity ; GNSS ; Strain ; seismic hazard ; Egypt ; 04. Solid Earth ; 04.03. Geodesy ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...