ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-31
    Description: This study highlights recent advances and challenges of applying coupled physical-biogeochemical modeling for investigating the distribution of the key phytoplankton groups in the Southern Ocean, an area of strong interest for understanding biogeochemical cycling and ecosystem functioning under present climate change. Our simulations of the phenology of various Phytoplankton Functional Types (PFTs) are based on a version of the Darwin biogeochemical model coupled to the Massachusetts Institute of Technology (MIT) general circulation model (Darwin-MITgcm). The ecological module version was adapted for the Southern Ocean by: 1) improving coccolithophores abundance relative to the original model by introducing a high affinity for nutrients and an ability to escape grazing control for coccolithophores; 2) including two different (small vs. large) size classes of diatoms; and 3) accounting for two distinct life stages for Phaeocystis (single cell vs. colonial). This new model configuration describes best the competition and co-occurrence of the PFTs in the Southern Ocean. It improves significantly relative to an older version the agreement of the simulated abundance of the coccolithophores and diatoms with in situ scanning electron microscopy observations in the Subantarctic Zone as well as with in situ diatoms and haptophytes (including coccolithophores and Phaeocystis) chlorophyll a concentrations within the Patagonian Shelf and along the Western Antarctic Peninsula obtained by diagnostic pigment analysis. The modeled Southern Ocean PFT dominance also agrees well with satellite-based PFT information.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2021-01-25
    Description: Phytoplankton in the Southern Ocean support important ecosystems and play a key role in the earth’s carbon cycle, hence affecting climate. However, current global biogeochemical models struggle to reproduce the dynamics and co-existence of key phytoplankton functional types (PFTs) in this Ocean. Here we explore the traits important to allow three key PFTs (diatoms,coccolithophores and Phaeocystis) to have distributions, dominance and composition consistent with observations. In this study we use the Darwin biogeochemical/ecosystem model coupled to the Massachusetts Institute of Technology (MIT) general circulation model (Darwin-MITgcm). We evaluated our model against an extensive synthesis of observations, including in situ microscopy and high-performance liquid chromatography (HPLC), and satellite derived phytoplankton dominance, PFTchlorophyll-a (Chla), and phenology metrics. To capture the regional timing of diatom blooms obtained from satellite required including both a lightly silicified diatom type and a larger and heavy silicified type in the model. To obtain the anticipated distribution of coccolithophores, including the Great Calcite Belt, required accounting for a high affinity for nutrients and anability to escape grazing control of this PFT. The implementation of two life stages of Phaeocystis to simulate both solitary and colonial forms of this PFT (with switching between forms being driven by iron availability) improved the co-existence of coccolithophores and Phaeocystis north of the Polar Front. The dual life-stages of Phaeocystis allowed it to compete both with other phytoplankton of larger size and/or similar sizes. The evaluation of simulated PFTs showed significant agreement to a large set of matchups with in situ PFT Chl-a data derived from pigment concentrations. Satellite data provided important qualitative comparisons of PFT phenology and PFT dominance. With these newly added traits the model produced the observed 〉50% coccolithophore contribution to the biomass of biomineralizing PFTs in the Great Calcite Belt. The model together with the large synthesis of observations provides a clearer picture of the Southern Ocean phytoplankton community structure, and new appreciation of the traits that are likely important in setting this structure.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...