ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-13
    Description: Developments in ocean data assimilation (DA) and observing system technologies are intertwined. New observation types lead to new DA methods, and new DA methods such as Coupled Data Assimilation can change the value of existing observations or indicate where new observations can have greater utility for monitoring and prediction. Practitioners are encouraged to make better use of observations that are already available, for example in strongly coupled data assimilation where ocean observations can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are useful for the analysis of climate,as well as initializing operational long-range prediction models. There are remaining challenges for ocean reanalyses due to biases and abrupt changes in the ocean observing system throughout its history, the presence of biases and drifts in models, and simplifying assumptions made in the DA methods. From a governance point of view, more support is needed to interface the observing community and the ocean DA community. For prediction applications, the ocean DA community must work with the ocean observing community to establish protocols for rapid communication of ocean observing data on NWP timescales. There is potential for new observations to enhance the observing system by supporting prediction on multiple timescales, ranging from the typical timescale of numerical weather prediction covering hours to weeks, out to multiple decades. It is highly encouraged that communication be fostered between thesecommunities to allow operational prediction centers the ability to provide guidance to the design of a sustained and adaptive observing network.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70691 , Frontiers in Marine Science (e-ISSN 2296-7745); 6; 391
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-29
    Description: Global, 3-hourly, 9-km resolution soil moisture estimates are available with a mean latency of ~2.5 days from the NASA Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product. These estimates are based on the assimilation of SMAP radiometer brightness temperature (Tb) observations into the NASA Catchment land surface model using a spatially distributed ensemble Kalman filter. Routine monitoring of the L4_SM system's assimilation diagnostics revealed occasionally large observation-minus-forecast Tb differences across eastern central Australia that resulted in large analysis increments (or adjustments) of the model forecast soil moisture. Because this region lacks in situ soil moisture measurements, we developed an alternative approach to assess the veracity of the soil moisture analysis increments in the L4_SM system. Using regional gauge-based precipitation data, we demonstrate that the L4_SM soil moisture increments are correlated with errors in the L4_SM precipitation forcing, suggesting that the SMAP Tb observations contribute valuable information to the L4_SM soil moisture estimates.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN72193 , IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium; Jul 28, 2019 - Aug 02, 2019; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-17
    Description: The Aquarius/SAC-D mission operated between August 2011 and June 2015 with the main goal of providing global estimates of sea surface salinity (SSS). It comprised both active and passive microwave sensors operating at L-band to observe the same surface area almost simultaneously. Measurements from both instruments underwent subsequent filtering to mitigate the effect of Radio Frequency Interference (RFI). This report describes the analysis of statistics of RFI in samples acquired by the Aquarius radiometers, and its results could be used to improve the performance of the interference detection algorithm.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA/TM–2019-219036
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Rivers and other freshwater systems play a crucial role in ecosystems, industry, transportation and agriculture. Despite the more than 40 years of inland water observations made possible by optical remote sensing, a standardized reflectance product for inland waters is yet forthcoming. The aim of this work is to compare the standard USGS land surface reflectance product to two Landsat-8 and Sentinel-2 aquatic remote sensing reflectance products over the Amazon, Columbia and Mississippi rivers. Landsat-8 reflectance products from all three routines are then evaluated for their comparative performance in retrieving chlorophyll-a and turbidity in reference to shipborne, underway in situ validation measurements. The land surface product shows the best agreement (4 percent Mean Absolute Percent Difference) with field measurements of radiometry collected on the Amazon River and generates 36 percent higher reflectance values in the visible bands compared to aquatic methods (ACOLITE (Atmospheric Correction for OLI (Operational Land Imager) 'lite') and SeaDAS (Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System)) with larger differences between land and aquatic products observed in Sentinel-2 (0.01 per steraradian) compared to Landsat-8 (0.001 per steraradian). Choice of atmospheric correction routine can bias Landsat-8 retrievals of chlorophyll-a and turbidity by as much as 59 percent and 35 percent respectively. Using a more restrictive time window for matching in situ and satellite imagery can reduce differences by 531 percent depending on correction technique. This work highlights the challenges of satellite retrievals over rivers and underscores the need for future optical and biogeochemical research aimed at improving our understanding of the absorbing and scattering properties of river water and their relationships to remote sensing reflectance.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN66756 , Remote Sensing of Environment (ISSN 0034-4257); 224; 104-118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-20
    Description: The Gravity Recovery and Climate Experiment (GRACE) mission has provided us with unforeseen information on terrestrial water-storage (TWS) variability, contributing to our understanding of global hydrological processes, including hydrological extreme events and anthropogenic impacts on water storage. Attempts to decompose GRACE-based TWS signals into its different water storage layers, i.e., surface water storage (SWS), soil moisture, groundwater and snow, have shown that SWS is a principal component, particularly in the tropics, where major rivers flow over arid regions at high latitudes. Here, we demonstrate that water levels, measured with radar altimeters at a limited number of locations, can be used to reconstruct gridded GRACE-based TWS signals in the Amazon basin, at spatial resolutions ranging from 0.5 to 3, with mean absolute errors (MAE) as low as 2.5 cm and correlations as high as 0.98. We show that, at 3 spatial resolution, spatially-distributed TWS time series can be precisely reconstructed with as few as 41 water-level time series located within the basin. The proposed approach is competitive when compared to existing TWS estimates derived from physically based and computationally expensive methods. Also, a validation experiment indicates that TWS estimates can be extrapolated to periods beyond that of the model regression with low errors. The approach is robust, based on regression models and interpolation techniques, and offers a new possibility to reproduce spatially and temporally distributed TWS that could be used to fill inter-mission gaps and to extend GRACE-based TWS time series beyond its timespan.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN75114 , Remote Sensing (e-ISSN 2072-4292); 11; 21; 2487
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...