ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Age; AGE; Analytical method; Atlantic meridional overturning circulation; ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; deep water formation; DEPTH, sediment/rock; KNR158-4-MC10; Labrador Sea; PC; Piston corer; Reference/source; sortable silt; subsurface ocean temperatures
  • Geosciences (General)
  • Hadley circulation
  • 2015-2019  (6)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 7565-7581, doi:10.1175/JCLI-D-18-0108.1.
    Description: There is mounting evidence that the width of the tropics has increased over the last few decades, but there are large differences in reported expansion rates. This is, likely, in part due to the wide variety of metrics that have been used to define the tropical width. Here we perform a systematic investigation into the relationship among nine metrics of the zonal-mean tropical width using preindustrial control and abrupt quadrupling of CO2 simulations from a suite of coupled climate models. It is shown that the latitudes of the edge of the Hadley cell, the midlatitude eddy-driven jet, the edge of the subtropical dry zones, and the Southern Hemisphere subtropical high covary interannually and exhibit similar long-term responses to a quadrupling of CO2. However, metrics based on the outgoing longwave radiation, the position of the subtropical jet, the break in the tropopause, and the Northern Hemisphere subtropical high have very weak covariations with the above metrics and/or respond differently to increases in CO2 and thus are not good indicators of the expansion of the Hadley cell or subtropical dry zone. The differing variability and responses to increases in CO2 among metrics highlights that care is needed when choosing metrics for studies of the width of the tropics and that it is important to make sure the metric used is appropriate for the specific phenomena and impacts being examined.
    Description: DW acknowledges support from NSF AGS-1403676.
    Description: 2019-02-08
    Keywords: Hadley circulation ; Hydrologic cycle ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-23
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(5) (2019): 1551-1571. doi:10.1175/JCLI-D-18-0444.1.
    Description: Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability.
    Description: We thank Ori Adam, Nick Davis, Isaac Held, Tim Merlis, Lorenzo Polvani, and one anonymous reviewer for helpful comments and suggestions. We thank U.S. CLIVAR and the International Space Science Institute (ISSI) for funding working groups that stimulated this project. We thank all members of the working groups for helpful discussions, and the U.S. CLIVAR and ISSI offices and their sponsoring agencies (NASA,NOAA,NSF,DOE, ESA, Swiss Confederation, Swiss Academy of Sciences, and University of Bern) for supporting these groups and activities.We acknowledge WCRP’sWorking Group on CoupledModelling, which is responsible for CMIP, and we thank the climate modeling groups (Table 2) for producing and making available their model output. For CMIP, the U.S. DOE PCMDI provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.
    Description: 2019-08-06
    Keywords: Hadley circulation ; Climate models ; Reanalysis data ; Multidecadal variability ; Pacific decadal oscillation ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: The climate research community uses global atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere; they are a particularly powerful tool for studying phenomena that cannot be directly observed. Different reanalyses may give very different results for the same diagnostics. The Stratosphere troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare key diagnostics that are important for stratospheric processes and their tropospheric connections among available reanalyses. S-RIP has been identifying differences among reanalyses and their underlying causes, providing guidance on appropriate usage of reanalysis products in scientific studies (particularly those of relevance to SPARC), and contributing to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. S-RIP emphasizes diagnostics of the upper troposphere, stratosphere, and lower mesosphere. The draft S-RIP final report is expected to be completed in 2018. This poster gives a summary of the S-RIP project and presents highlights including results on the Brewer-Dobson circulation, stratosphere/troposphere dynamical coupling, the extra-tropical upper troposphere / lower stratosphere, the tropical tropopause layer, the quasi-biennial oscillation, lower stratospheric polar processing, and the upper stratosphere/lower mesosphere.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN64682 , American Meteorological Society (AMS); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: The Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission presents new opportunities and new challenges in applying observations of two complementary multi-angle polarimeters for the space-based retrieval of global aerosol properties.Aerosol remote sensing from multi-angle radiometric-only observations enables aerosol characterization to a greater degree than single-view radiometers, as demonstrated by nearly two decades of heritage instruments. Adding polarimetry to the multi-angle observations allows for the retrieval of aerosol optical depth, Angstrom exponent,parameters of size distribution, measures of aerosol absorption, complex refractive index and degree of non-sphericity of the particles, as demonstrated by two independent retrieval algorithms applied to the heritage POLarization and Directionality of the Earth's Reflectance (POLDER) instrument. The reason why this detailed particle characterization is possible is because a multi-angle polarimeter measurement contains twice the number of Degrees of Freedom of Signal (DFS) compared to an observation from a single-view radiometer. The challenges of making use of this information content involve separating surface signal from atmospheric signal, especially when the surface is optically complex and especially in the ultraviolet portion of the spectrum where we show the necessity of polarization in making that separation. The path forward is likely to involve joint retrievalsthat will simultaneously retrieve aerosol and surface properties, although advances will berequired in radiative transfer modeling and in representing optically complex constituents in those models. Another challenge is in having the processing capability that can keep pace with the output of these instruments in an operational environment. Yet, preliminaryalgorithms applied to airborne multi-angle polarimeter observations offer encouraging results that demonstrate the advantages of these instruments to retrieve aerosol layer height, particle single scattering albedo, size distribution and spectral optical depth, and also show the necessity of polarization measurements, not just multi-angle radiometricmeasurements, to achieve these results.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN71721 , Frontiers in Environmental Science (e-ISSN 2296-665X); 7; 94
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN55553 , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 18; 2; 1379-1394
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-18
    Keywords: Age; AGE; Analytical method; Atlantic meridional overturning circulation; ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; deep water formation; DEPTH, sediment/rock; KNR158-4-MC10; Labrador Sea; PC; Piston corer; Reference/source; sortable silt; subsurface ocean temperatures
    Type: Dataset
    Format: text/tab-separated-values, 36 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...