ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Institute of Physics  (62)
  • Wiley  (41)
  • American Chemical Society (ACS)
  • American Physical Society (APS)
  • 2015-2019  (103)
  • 2019  (103)
Collection
Years
  • 2015-2019  (103)
Year
  • 1
    Publication Date: 2019
    Description: Abstract Texturing is an effective approach to improving the piezoelectricity of piezoelectric ceramics. In this work, 〈001〉 textured Li+‐doped 0.852Bi0.5Na0.5TiO3–0.11Bi0.5K0.5TiO3–0.038BaTiO3 ternary lead‐free piezoelectric ceramics are prepared by the reactive templates grain growth (RTGG) method. X‐ray diffraction (XRD) results demonstrate a high orientation degree of 77% along the 〈001〉 direction. Outstanding electro‐strain response, which is higher than most of reported BNT‐based textured ceramics, is achieved due to the contribution of oriented‐grains along the 〈001〉 direction. A large electro‐strain of 0.55% with a relatively low hysteresis is obtained at 6.5 kV/mm with corresponding large signal piezoelectric coefficient () of 846 pm/V in the textured ceramics, which is 49% higher than that of the random ceramics. Besides, the electro‐strain could reach as high as 0.52%@5.5 kV/mm ( = 945 pm/V) at 100°C. These results indicate that the RTGG is an effective way to design high performance lead‐free piezoelectric materials.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-01
    Print ISSN: 1742-6588
    Electronic ISSN: 1742-6596
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-01
    Print ISSN: 1742-6588
    Electronic ISSN: 1742-6596
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-01
    Print ISSN: 1742-6588
    Electronic ISSN: 1742-6596
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract Revegetation of pioneer plants is a critical phase in community establishment for mudflats in seriously degraded coastal wetlands. We tested a hypothesis of the importance of a “power balance” among propagule resilience and sedimentary and tidal disturbances for vegetation reestablishment. Our experiment used three types of propagules (seeds, seedlings, and corms) of native Scirpus species in the fringing flats with similar tidal flows and varying sedimentary intensities in the Yangtze Estuary. Regardless of the initial planting densities, the seed germination rate was extremely low in the field situation. Although the incubated seedlings were planted directly on the bare flat, the wave movement easily flushed the seedlings, even at the site with moderate sedimentary accretion. Failure of the revegetation practice using the seed and seedling materials indicated that the combined “growing and anchoring power” of young seedlings and “stabilizing power” of the sediment were insufficient to withstand the “dislodging power” of the tidal energy. In contrast, the planting approach with underground propagules (corms) proved to be feasible for vegetation establishment at the sites with moderate and low‐level sedimentary intensities. The successful practice improved the tipping point of plant survival and tussock formation could be surpassed when the combined growing and anchoring power of seedlings that developed from corms with the stabilizing power of the sediment was greater than the dislodging power of the wave energy. However, at the site with high‐level sedimentary intensity, the excessive sediment converted to the burying stress power as seedlings developed from the corms, revealing a burial threshold for seedling survival. The risk of seedling establishment was high when the burying stress power of the sediment far outweighed the combination of the growing power of the seedlings and the sediment removal power of the tidal current and surpassed the tipping point of vegetation die‐off. Additionally, we checked the practice cost of the different approaches to ensure a highly cost‐effective revegetation planning based on site suitability. This study highlights that understanding of the propagule–sediment–tide power balance offers a tool for improvement of the revegetation and management of site‐specific sedimentary and hydrological environments for many degraded coastal ecosystems.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Porous carbon fibers (PCFs) were prepared from porous polyacrylonitrile fibers by cross‐linking, oxidation, and carbonization. X‐ray diffraction patterns revealed that graphite structures as well as disordered carbon coexisted in the PCFs. Nitrogen content was more than 15.3 wt% with the variation of oxidation temperature, and a maximum value was obtained at 275°C. Nitrogen was quickly released with carbonization temperature. Compared with the fiber prepared at elevated carbonization temperatures, those owning high nitrogen contents deserved better carbon dioxide (CO2) adsorption performance in the simulated flue gas environment (10% CO2/90% N2). The CO2 adsorption had a better relationship with nitrogen content rather than specific surface area and pore volumes. Especially, nitrogen was very useful to enhance the CO2 adsorption of the fibers with low microporosity. The heat of CO2 adsorption was in the range of 39.8–54.6 kJ mol−1, which indicated good selectivity of CO2 adsorption. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.
    Electronic ISSN: 2152-3878
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract Understanding concentration‐discharge (C‐Q) relationships are essential for predicting chemical weathering and biogeochemical cycling under changing climate and anthropogenic conditions. Contrasting C‐Q relationships have been observed widely, yet a mechanistic framework that can interpret diverse patterns remains elusive. This work hypothesizes that seemingly disparate C‐Q patterns are driven by switching dominance of end‐member source waters and their chemical contrasts arising from subsurface biogeochemical heterogeneity. We use data from Coal Creek, a high‐elevation mountainous catchment in Colorado, and a recently developed watershed reactive transport model (BioRT‐Flux‐PIHM). Sensitivity analysis and Monte‐Carlo simulations (500 cases) show that reaction kinetics and thermodynamics and distribution of source materials across depths govern the chemistry gradients of shallow soil water and deeper groundwater entering the stream. The alternating dominance of organic‐poor yet geo‐solute‐rich groundwater under dry conditions and organic‐rich yet geo‐solute‐poor soil water during spring melt leads to the flushing pattern of dissolved organic carbon and the dilution pattern of geogenic solutes (e.g., Na, Ca, and Mg). In addition, the extent of concentration contrasts regulates the power law slopes (b) of C‐Q patterns via a general equation . At low ratios of soil water versus groundwater concentrations (Cratio = Csw/Cgw 〈 0.6), dilution occurs; at high ratios (Cratio 〉 1.8), flushing arises; chemostasis occurs in between. This equation quantitatively interprets b values of 11 solutes (dissolved organic carbon, dissolved P, NO3−, K, Si, Ca, Mg, Na, Al, Mn, and Fe) from three catchments (Coal Creek, Shale Hills, and Plynlimon) of differing climate, geologic, and land cover conditions. This indicates potentially broad regulation of subsurface biogeochemical heterogeneity in determining C‐Q patterns and wide applications of this equation in quantifying b values, which can have broad implications for predicting chemical weathering and biogeochemical transformation at the watershed scale.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Abstract Soil organic matter (SOM) is a critical ecosystem variable regulated by interacting physical, chemical, and biological processes. Collaborative efforts to integrate perspectives, data, and models from interdisciplinary research and observation networks can significantly advance predictive understanding of SOM. We outline how integrating three networks—the Long‐Term Ecological Research with a focus on ecological dynamics, the Critical Zone Observatories with strengths in landscape/geologic context, and the National Ecological Observatory Network with standardized multiscale measurements—can advance SOM knowledge. This integration requires improved data dissemination and sharing, coordinated data collection activities, and enhanced collaboration between empiricists and modelers within and across networks.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract Whether arc mantle is more oxidized than oceanic mantle is persistently debated. The behavior of multivalent vanadium (V) is oxygen fugacity (fO2) sensitive, and the ratios of V to a homovalent element (e.g., Sc, Ti, or Yb) in basalts were commonly used as fO2 proxies. Similar ratios, such as V/Sc, between arc basalts and mid‐ocean ridge basalts were previously taken as evidence for similar fO2s in their mantle sources. However, this claim may be problematic because elemental ratios are primarily controlled by partition coefficients (D values), which are further affected by various factors. Here we determined D values of V and other transition elements between mantle minerals and basaltic melts at typical arc T–P‐H2O conditions and variable fO2s. Combining experimental results with published data, the effects of fO2, T, P, and phase compositions on DV, DSc, and DTi for olivine, orthopyroxene (opx), clinopyroxene (cpx), and spinel were evaluated using multiple linear regressions. The results show that DV values for these four minerals all increase with decreasing fO2 and temperature, leading to higher DV/DSc and DV/DTi ratios at low temperatures than those at high temperatures given a certain fO2. Thus, similar V/Sc and V/Ti ratios between arc basalts and mid‐ocean ridge basalts reflect a relatively oxidized arc mantle due to its lower melting temperatures. In light of the highly incompatible behavior of Ti during mantle melting, V‐Ti systematics are regarded to be more superior than V‐Sc systematics in the fO2 estimation. Partial melting modelling results using V‐Ti systematics reveal that arc mantle is, on average, ~0.9 log units higher in fO2 than oceanic mantle.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: To assess the reliability of arboreal phytoliths for differentiating vegetation types in temperate forest regions, we systematically analysed arboreal leaf phytoliths from 72 arboreal plants and 49 modern soils from three forest types in northeast China. The arboreal leaf phytolith production and morphotypes were highly variable between species. The arboreal leaf phytolith assemblages could clearly distinguish between broadleaf and coniferous species, but they were much less successful in differentiating broadleaved trees into subtaxa. Coniferous leaf morphotypes were successfully used to differentiate coniferous trees into families and subtaxa, especially in the Pinaceae. Two diagnostic broadleaved and six coniferous phytolith morphotypes were recognized within the modern soil beneath forest ecosystems. These arboreal phytoliths comprised up to 10–15% of the total soil phytoliths, and were dominated by coniferous types. Arboreal phytolith concentrations and phytolith assemblages in the soils fluctuated substantially amongst the three forest types. Soil arboreal phytolith assemblages were successfully used to differentiate samples from Larix mixed forest, broadleaf forest and Pinus koraiensis mixed forest. In addition, the arboreal index quantitatively distinguished the three forest types, with B/BE values 〈0.4 for Larix mixed forest samples, values from 0.4 to 0.6 for broadleaf forest samples, and values from 0.6 to 0.9 for P. koraiensis mixed forest. Thus, our surface soil arboreal phytolith assemblages and arboreal index are a useful reference for differentiating forest ecotypes, and they also provide reliable analogues for arboreal phytoliths from palaeoecological contexts in temperate forest regions.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...