ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-10
    Description: Wind warnings are the second-most-frequent advisory issued by the U.S. Air Force’s 45th Weather Squadron (45WS) at Cape Canaveral, Florida. Given the challenges associated with nowcasting convection in Florida during the warm season, improvements in 45WS warnings for convective wind events are desired. This study aims to explore the physical bases of dual-polarization radar signatures within wet downbursts around Cape Canaveral and identify signatures that may assist the 45WS during real-time convective wind nowcasting. Data from the 45WS’s C-band dual-polarization radar were subjectively analyzed within an environmental context, with quantitative wind measurements recorded by weather tower sensors for 32 threshold-level downbursts with near-surface winds ≥ 35 kt (1 kt ≈ 0.51 m s−1) and 32 null downbursts. Five radar signatures were identified in threshold-level downburst-producing storms: peak height of 1-dB differential reflectivity ZDR column, peak height of precipitation ice signature, peak reflectivity, height below 0°C level where ZDR increases to 3 dB within a descending reflectivity core (DRC), and vertical ZDR gradient within DRC. Examining these signatures directly in updraft–downdraft cycles that produced threshold-level winds yielded mean lead times of 20.0–28.2 min for cumulus and mature stage signatures and 12.8–14.9 min for dissipating stage signatures, with higher signature test values generally yielding higher skill scores. A conceptual test of utilizing signatures within earlier cells in multicell storms to indirectly predict the potential for intense downbursts in later cells was performed, which offered increased lead times and skill scores for an Eulerian forecast region downstream from the storm initiation location.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-04
    Description: The new space-based Lightning Imager (LI) on board the Meteosat Third Generation (MTG) geostationary satellite will improve the observation of lightning over Europe, the Mediterranean Sea, Africa and the Atlantic Ocean from 2021 onwards. In preparation of the use of the upcoming MTG-LI data, we compare observations by the Lightning Imaging Sensor (LIS) on the International Space Station (ISS), which applies an optical technique similar to MTG-LI, to concurrent records of the Low Frequency (LF) ground-based network Meteorage. Data were analyzed over the northwestern Mediterranean Sea from March 01, 2017 to March 20, 2018. Flashes are detected by ISS-LIS using illuminated pixels, also called events, within a given (2.0 ms) frame and during successive frames. Meteorage describes flashes as a suite of Intra-Cloud/cloud-to-cloud (IC) pulses and/or Cloud-to-Ground (CG) strokes. Both events and pulses/strokes are grouped to flashes using a novel in-house algorithm. In our study, ISS-LIS detects about 57 % of the flashes detected by Meteorage. The flash detection efficiency (DE) of Meteorage relative to ISS-LIS exceeds 80 %. Coincident matched flashes detected by the two instruments show a good spatial and temporal agreement. Both peak and mean distance between matches are smaller than the ISS-LIS pixel resolution (about 5.0 km). The timing offset for matched ISS-LIS and Meteorage flashes is usually shorter than the ISS-LIS integration time frame (2.0 ms). The closest events and pulses/strokes of matched flashes achieve sub-millisecond offsets. Further analysis of flash characteristics reveals that longer lasting and more spatially extended flashes are more likely detected by both ISS-LIS and Meteorage than shorter duration and smaller extent flashes. ISS-LIS' relative DE is lower for daytime versus nighttime as well as for CG versus IC flashes. A second ground-based network, the Very High Frequency (VHF) SAETTA Lightning Mapping Array (LMA), further enhances and validates the lightning pairing between ISS-LIS and Meteorage. It also provides altitude information of the lightning discharges and adds a detailed lightning mapping to the comparison for verification and better understanding of the processes. Both ISS-LIS and Meteorage flash detections feature a high degree of correlation with the SAETTA observations (without altitude information). In addition, Meteorage flashes with ISS-LIS match tend to be associated with discharges that occur at significantly higher altitudes than unmatched flashes. Hence, ISS-LIS flash detection suffers degradation with low-level flashes resulting in lower DE.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...