ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (13)
  • EDP Sciences  (7)
  • De Gruyter
  • 2015-2019  (20)
  • 2000-2004
  • 1965-1969
  • 1940-1944
  • 2019  (20)
Collection
Years
  • 2015-2019  (20)
  • 2000-2004
  • 1965-1969
  • 1940-1944
Year
  • 1
    Publication Date: 2019-05-01
    Description: Exploiting a sample of galaxies drawn from the XXL-North multiwavelength survey, we present an analysis of the stellar population properties of galaxies at 0.1 ≤ z ≤ 0.5, by studying galaxy fractions and the star formation rate (SFR)–stellar mass (M⋆) relation. Furthermore, we exploit and compare two parametrisations of environment. When adopting a definition of “global” environment, we consider separately cluster virial (r ≤ 1r200) and outer (1r200 〈  r ≤ 3r200) members and field galaxies. We also distinguish between galaxies that belong or do not belong to superclusters, but never find systematic differences between the two subgroups. When considering the “local” environment, we take into account the projected number density of galaxies in a fixed aperture of 1 Mpc in the sky. We find that regardless of the environmental definition adopted, the fraction of blue or star-forming galaxies is the highest in the field or least dense regions and the lowest in the virial regions of clusters or highest densities. Furthermore, the fraction of star-forming galaxies is higher than the fraction of blue galaxies, regardless of the environment. This result is particularly evident in the virial cluster regions, most likely reflecting the different star formation histories of galaxies in different environments. Also the overall SFR–M⋆ relation does not seem to depend on the parametrisation adopted. Nonetheless, the two definitions of environment lead to different results as far as the fraction of galaxies in transition between the star-forming main sequence and the quenched regime is concerned. In fact, using the local environment the fraction of galaxies below the main sequence is similar at low and high densities, whereas in clusters (and especially within the virial radii) a population with reduced SFR with respect to the field is observed. Our results show that the two parametrisations adopted to describe the environment have different physical meanings, i.e. are intrinsically related to different physical processes acting on galaxy populations and are able to probe different physical scales.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-01
    Description: We use a sub-set of the DustPedia galaxy sample (461 galaxies) to investigate the effect the environment has had on galaxies. We consider Virgo cluster and field samples and also assign a density contrast parameter to each galaxy, as defined by the local density of SDSS galaxies. We consider their chemical evolution (using MDust/MBaryon and MGas/MBaryon), their specific star formation rate (SFR/MStars), star formation efficiency (SFR/MGas), stars-to-dust mass ratio (MStars/MDust), gas-to-dust mass ratio (MGas/MDust) and the relationship between star formation rate per unit mass of dust and dust temperature (SFR/MDust and TDust). Late type galaxies (later than Sc) in all of the environments can be modelled using simple closed box chemical evolution and a simple star formation history (SFR(t) ∝ t exp−t/τ). For earlier type galaxies the physical mechanisms that give rise to their properties are clearly much more varied and require a more complicated model (mergers, gas in or outflow). However, we find little or no difference in the properties of galaxies of the same morphological type within the cluster, field or with different density contrasts. It appears that it is morphology, how and whenever this is laid down, and consistent internal physical processes that primarily determine the derived properties of galaxies in the DustPedia sample and not processes related to differences in the local environment.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-01
    Description: A wealth of tiny galactic systems populates the surroundings of the Milky Way. However, some of these objects might have originated as former satellites of the Magellanic Clouds, in particular of the Large Magellanic Cloud (LMC). Examples of the importance of understanding how many systems are genuine satellites of the Milky Way or the LMC are the implications that the number and luminosity-mass function of satellites around hosts of different mass have for dark matter theories and the treatment of baryonic physics in simulations of structure formation. Here we aim at deriving the bulk motions and estimates of the internal velocity dispersion and metallicity properties in four recently discovered distant southern dwarf galaxy candidates, Columba I, Reticulum III, Phoenix II, and Horologium II. We combined Gaia DR2 astrometric measurements, photometry, and new FLAMES/GIRAFFE intermediate-resolution spectroscopic data in the region of the near-IR Ca II triplet lines; this combination is essential for finding potential member stars in these low-luminosity systems. We find very likely member stars in all four satellites and are able to determine (or place limits on) the bulk motions and average internal properties of the systems. The systems are found to be very metal poor, in agreement with dwarf galaxies and dwarf galaxy candidates of similar luminosity. Of these four objects, we can only firmly place Phoenix II in the category of dwarf galaxies because of its resolved high velocity dispersion (9.5 −4.4+6.8 km s−1) and intrinsic metallicity spread (0.33 dex). For Columba I we also measure a clear metallicity spread. The orbital pole of Phoenix II is well constrained and close to that of the LMC, suggesting a prior association. The uncertainty on the orbital poles of the other systems is currently very large, so that an association cannot be excluded, except for Columba I. Using the numbers of potential former satellites of the LMC identified here and in the literature, we obtain for the LMC a dark matter mass of M200 = 1.9 −0.9+1.3 × 1011 M⊙.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-01
    Description: In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. To increase the sensitivity of detecting counterparts of transient or variable sources by telescopes with a limited field of view, IceCube began releasing alerts for single high-energy (Eν 〉  60 TeV) neutrino detections with sky localisation regions of order 1° radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016–2017 to search for any optical transients that may be related to the neutrinos. Typically 10–20 faint (miP1 ≲ 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp, or other peculiar light curve and physical properties. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of ∼50%), we found a SN PS16cgx, located at 10.0′ from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at redshift z = 0.2895 ± 0.0001. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak Si II absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5σ limiting magnitude of miP1 ≈ 22 mag, between 1 day and 25 days after detection.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-04-01
    Description: Aims. Within the framework of the DustPedia project we investigate the properties of cosmic dust and its interaction with stellar radiation (originating from different stellar populations) for 814 galaxies in the nearby Universe, all observed by the Herschel Space Observatory. Methods. We take advantage of the widely used fitting code CIGALE, properly adapted to include the state-of-the-art dust model THEMIS. For comparison purposes, an estimation of the dust properties is provided by approximating the emission at far-infrared and sub-millimeter wavelengths with a modified blackbody. Using the DustPedia photometry we determine the physical properties of the galaxies, such as the dust and stellar mass, the star-formation rate, the bolometric luminosity, the unattenuated and the absorbed by dust stellar light, for both the old (〉 200 Myr) and young (≤200 Myr) stellar populations. Results. We show how the mass of stars, dust, and atomic gas, as well as the star-formation rate and the dust temperature vary between galaxies of different morphologies and provide recipes to estimate these parameters given their Hubble stage (T). We find a mild correlation between the mass fraction of the small a-C(:H) grains with the specific star-formation rate. On average, young stars are very efficient in heating the dust, with absorption fractions reaching as high as ∼77% of the total unattenuated luminosity of this population. On the other hand, the maximum absorption fraction of old stars is ∼24%. Dust heating in early-type galaxies is mainly due to old stars, up to a level of ∼90%. Young stars progressively contribute more for “typical” spiral galaxies and they become the dominant source of dust heating for Sm-type and irregular galaxies, with ∼60% of their luminosity contributing to that purpose. Finally, we find a strong correlation of the dust heating fraction by young stars with morphology and the specific star-formation rate.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-11
    Description: We use the unparalleled statistics of the VIPERS survey to investigate the relation between the surface mean stellar mass density Σ = ℳ/(2 πRe2) of massive passive galaxies (MPGs, ℳ ≥ 1011 M⊙) and their local environment in the redshift range 0.5 ≤ z ≤ 0.8. Passive galaxies were selected on the basis of their NUVrK colors (∼900 objects), and the environment was defined as the galaxy density contrast, δ, using the fifth nearest-neighbor approach. The analysis of Σ versus δ was carried out in two stellar mass bins. In galaxies with ℳ ≤ 2 × 1011 M⊙, no correlation between Σ and δ is observed. This implies that the accretion of satellite galaxies, which is more frequent in denser environments (groups or cluster outskirts) and efficient in reducing the galaxy Σ, is not relevant in the formation and evolution of these systems. Conversely, in galaxies with ℳ 〉 2 × 1011 M⊙, we find an excess of MPGs with low Σ and a deficit of high-Σ MPGs in the densest regions with respect to other environments. We interpret this result as due to the migration of some high-Σ MPGs (〈 1% of the total population of MPGs) into low-Σ MPGs, probably through mergers or cannibalism of small satellites. In summary, our results imply that the accretion of satellite galaxies has a marginal role in the mass-assembly history of most MPGs. We have previously found that the number density of VIPERS massive star-forming galaxies (MSFGs) declines rapidily from z = 0.8 to z = 0.5, which mirrors the rapid increase in the number density of MPGs. This indicates that the MSFGs at z ≥ 0.8 migrate to the MPG population. Here, we investigate the Σ–δ relation of MSFGs at z ≥ 0.8 and find that it is consistent within 1σ with that of low-Σ MPGs at z ≤ 0.8. Thus, the results of this and our previous paper show that MSFGs at z ≥ 0.8 are consistent in terms of number and environment with being the progenitors of low-Σ MPGs at z 〈  0.8.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-01
    Description: Most radiative transfer models assume that dust in spiral galaxies is distributed exponentially. In this paper our goal is to verify this assumption by analysing the two-dimensional large-scale distribution of dust in galaxies from the DustPedia sample. For this purpose, we have made use of Herschel imaging in five bands, from 100 to 500 μm, in which the cold dust constituent is primarily traced and makes up the bulk of the dust mass in spiral galaxies. For a subsample of 320 disc galaxies, we successfully performed a simultaneous fitting with a single Sérsic model of the Herschel images in all five bands using the multi-band modelling code GALFITM. We report that the Sérsic index n, which characterises the shape of the Sérsic profile, lies systematically below 1 in all Herschel bands and is almost constant with wavelength. The average value at 250 μm is 0.67 ± 0.37 (187 galaxies are fitted with n250 ≤ 0.75, 87 galaxies have 0.75   1.25). Most observed profiles exhibit a depletion in the inner region (at r 〈  0.3−0.4 of the optical radius r25) and are more or less exponential in the outer part. We also find breaks in the dust emission profiles at longer distances (0.5−0.6) r25 which are associated with the breaks in the optical and near-infrared. We assumed that the observed deficit of dust emission in the inner galaxy region is related to the depression in the radial profile of the HI surface density in the same region because the atomic gas reaches high enough surface densities there to be transformed into molecular gas. If a galaxy has a triggered star formation in the inner region (for example, because of a strong bar instability, which transfers the gas inwards to the centre, or a pseudobulge formation), no depletion or even an excess of dust emission in the centre is observed.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-29
    Description: Climate change is affecting the rate of carbon cycling, particularly in the Arctic. Permafrost degradation through deeper thaw and physical disturbances results in the release of carbon dioxide and methane to the atmosphere and to an increase in lateral dissolved organic matter (DOM) fluxes. Whereas riverine DOM fluxes of the large Arctic rivers are well assessed, knowledge is limited with regard to small catchments that cover more than 40 % of the Arctic drainage basin. Here, we use absorption measurements to characterize changes in DOM quantity and quality in a low Arctic (Herschel Island, Yukon, Canada) and a high Arctic (Cape Bounty, Melville Island, Nunavut, Canada) setting with regard to geographical differences, impacts of permafrost degradation, and rainfall events. We find that DOM quantity and quality is controlled by differences in vegetation cover and soil organic carbon content (SOCC). The low Arctic site has higher SOCC and greater abundance of plant material resulting in higher chromophoric dissolved organic matter (cDOM) and dissolved organic carbon (DOC) than in the high Arctic. DOC concentration and cDOM in surface waters at both sites show strong linear relationships similar to the one for the great Arctic rivers. We used the optical characteristics of DOM such as cDOM absorption, specific ultraviolet absorbance (SUVA), ultraviolet (UV) spectral slopes (S275–295), and slope ratio (SR) for assessing quality changes downstream, at base flow and storm flow conditions, and in relation to permafrost disturbance. DOM in streams at both sites demonstrated optical signatures indicative of photodegradation downstream processes, even over short distances of 2000 m. Flow pathways and the connected hydrological residence time control DOM quality. Deeper flow pathways allow the export of permafrost-derived DOM (i.e. from deeper in the active layer), whereas shallow pathways with shorter residence times lead to the export of fresh surface- and near-surface-derived DOM. Compared to the large Arctic rivers, DOM quality exported from the small catchments studied here is much fresher and therefore prone to degradation. Assessing optical properties of DOM and linking them to catchment properties will be a useful tool for understanding changing DOM fluxes and quality at a pan-Arctic scale.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-19
    Description: The stratigraphic architecture of the Swiss Molasse basin, situated on the northern side of the evolving Alps, reveals crucial information about the basin's geometry, its evolution, and the processes leading to the deposition of the siliciclastic sediments. Nevertheless, the formation of the Upper Marine Molasse (OMM) and the controls on the related Burdigalian transgression have still been a matter of scientific debate. During the time period from ca. 20 to 17 Ma, the Swiss Molasse basin was partly flooded by a shallow marine sea striking SW–NE. Previous studies have proposed that the transgression occurred in response to a rise in global sea level, a reduction of sediment flux, or an increase in tectonically controlled accommodation space. Here, we readdress this problem and extract stratigraphic signals from the Burdigalian molasse deposits that can be related to changes in sediment supply rate, variations in the eustatic sea level, and subduction tectonics. To achieve this goal, we conducted sedimentological and stratigraphic analyses of several sites across the entire Swiss Molasse basin. Field investigations show that the transgression and the subsequent evolution of the Burdigalian seaway was characterized by (i) a deepening and widening of the basin, (ii) phases of erosion and non-deposition during Lower Freshwater Molasse (USM), OMM, and Upper Freshwater Molasse (OSM) times, and (iii) changes in along-strike drainage reversals. We use these changes in the stratigraphic record to disentangle tectonic and surface controls on the facies evolution at various scales. As the most important mechanism, rollback subduction of the European mantle lithosphere most likely caused a further downwarping of the foreland plate, which we use to explain the deepening and widening of the Molasse basin, particularly at distal sites. In addition, subduction tectonics also caused the uplift of the Aar massif. This process was likely to have shifted the patterns of surface loads, thereby resulting in a buckling of the foreland plate and influencing the water depths in the basin. We use this mechanism to explain the establishment of distinct depositional settings, particularly the formation of subtidal shoals wherein a bulge in relation to this buckling is expected. The rise of the Aar massif also resulted in a reorganization of the drainage network in the Alpine hinterland, with the consequence that the sediment flux to the basin decreased. We consider this reduction in sediment supply to have amplified the tectonically controlled deepening of the Molasse basin. Because the marine conditions were generally very shallow, subtle changes in eustatic sea level contributed to the formation of several hiatuses that chronicle periods of erosion and non-sedimentation. These processes also amplified the tectonically induced increase in accommodation space during times of global sea level highstands. Whereas these mechanisms are capable of explaining the establishment of the Burdigalian seaway and the formation of distinct sedimentological niches in the Swiss Molasse basin, the drainage reversal during OMM times possibly requires a change in tectonic processes at the slab scale, most likely including the entire Alpine range between the Eastern and Central Alps. In conclusion, we consider rollback tectonics to be the main driving force controlling the transgression of the OMM in Switzerland, with contributions by the uplift of individual crustal blocks (here the Aar massif) and by a reduction of sediment supply. This reduction of sediment flux was likely to have been controlled by tectonic processes as well when basement blocks became uplifted, thereby modifying the catchment geometries. Eustatic changes in sea level explain the various hiatuses and amplified the deepening of the basin during eustatic highstand conditions.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-03
    Description: Tectonic and geomorphic processes drive landscape evolution over different spatial and temporal scales. In mountainous environments, river incision sets the pace of landscape evolution, and hillslopes respond to channel incision by, e.g., gully retreat, bank erosion, and landslides. Sediment produced during stochastic landslide events leads to mobilization of soil and regolith on the slopes that can later be transported by gravity and water to the river network during phases of hillslope–channel geomorphic coupling. The mechanisms and scales of sediment connectivity mitigate the propagation of sediment pulses throughout the landscape and eventually drive the contribution of landslides to the overall sediment budget of mountainous catchments. However, to constrain the timing of the sediment cascade, the inherent stochastic nature of sediment and transport through landsliding requires an integrated approach accounting for different space scales and timescales. In this paper, we examine the sediment production on hillslopes and evacuation to the river network of one landslide, i.e. the Schimbrig earthflow, affecting the Entle River catchment located in the foothills of the Central Swiss Alps. We quantified sediment fluxes over annual, decadal, and millennial timescales using respectively unmanned aerial vehicle (UAV)–structure-from-motion (SfM) techniques, classic photogrammetry, and in situ produced cosmogenic radionuclides. At the decadal scale, sediment fluxes quantified for the period 1962–1998 are highly variable and are not directly linked to the intensity of sediment redistribution on the hillslope. At the millennial scale, landslide occurrence perturbs the regional positive linear relationship between sediment fluxes and downstream distance as the landslide-affected Schimbrig catchment is characterized by a decrease in sediment fluxes and a strong variability. Importantly, the average decadal sediment flux of the Schimbrig catchment is 2 orders of magnitude higher than millennial sediment fluxes computed over the same spatial extent. The discrepancy between decadal and millennial sediment fluxes, combined to the highly variable annual sediment evacuation from the hillslopes to the channel network suggest that phases of hillslope–channel geomorphic coupling are short and intermittent. During most of the time, the first-order catchments are transport-limited and sediment dynamics in the headwaters are uncoupled from the fluvial systems. In addition, our unique spatio-temporal database of sediment fluxes highlights the transient character of the intense geomorphic activity of the Schimbrig catchment in a regional context. Its decadal sediment flux is of the same order of magnitude as the background sediment flux going out of the entire Entle River catchment. Over the last 50 years, the Schimbrig catchment, which represents ca. 1 % of the entire study area, provides 65 % of the sediments that the entire Entle catchment will supply over the millennial scale. These results suggest that episodic supply of sediment from landslides during intermittent phases of hillslope–channel geomorphic coupling are averaged out when considering sediment fluxes at longer timescales and larger spatial scales.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...