ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (16)
  • American Chemical Society  (7)
  • Frontiers Media  (4)
  • 2020-2022
  • 2015-2019  (27)
  • 1925-1929
  • 2019  (27)
  • 1
    Publication Date: 2019
    Description: Abstract We present a continuing investigation of mass‐/charge‐dependent interactions between energetic ions (greater than tens of kiloelectron volts) and planetary magnetopauses and of the escape of the ions across the boundary. Previous studies at Earth using Magnetospheric Multiscale mission data are refined and advanced showing profound behavior differences between light (H, He) and singly charged heavy ions (O+). We highlight a distinctive feature of oxygen ions: an angular distribution bifurcation providing clear indication of entrainment along the magnetopause in Speiser‐like orbits during relatively stable magnetic conditions. This signature, interpreted using a simple kinetic model, suggests that these ions tend to be carried substantial distances along the boundary (even with boundary‐normal magnetic fields) in a fashion that impedes their full dayside escape. While large fluctuations and waves can likely sometimes disrupt the observed ordering, the following picture emerges. Energetic particles with gyroradii much smaller than the magnetopause thickness (e.g., electrons and absent boundary‐normal magnetic fields) and ions with gyroradii much larger than the thickness (e.g., O+) are impeded from fully escaping across the boundary. However, energetic ions with intermediate‐sized gyroradii commensurate with the thickness (e.g., H+, He++, and O6+) can be effectively scattered within the boundary causing them to escape much more readily, with and without boundary‐normal fields. This picture is supported by observations from the Juno spacecraft at the near‐dawn meridian side of Jupiter's magnetopause. There it is observed that energetic electrons and heavy ions are more strongly contained by the magnetopause than are the energetic protons and helium ions.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Statistical analysis of geomagnetic paleosecular variation (PSV) and time averaged field (TAF) has been largely based on global compilations of paleomagnetic data from lava flows. These show different trends in the averaged inclination anomaly (ΔI) between the two hemispheres, with small positive (〈2°) anomalies in mid‐southern latitudes and large negative (〉‐5°) anomalies in mid‐northern latitudes. To inspect the large ΔI between 20°N‐40°N we augment the global data with a new paleomagnetic dataset from the Golan‐Heights (GH), a Plio‐Pleistocene volcanic plateau in northeast Israel, located at 32°N‐33°N. The GH dataset consists of 91 lava flows sites: 40 sites obtained in the 1990s and 51 obtained in this study. The chronology of the flows is constrained by 57 40Ar/39Ar ages: 39 from previous studies and 18 from this study, which together cover most of the GH plateau. We show that the 1990s dataset might be affected by block rotations and does not fully sample PSV. The Plio‐Pleistocene pole (86.3°N, 120.8°E, N=44, k=25, α95=4.4°), calculated after applying selection criteria with Fisher precision parameter (k) ≥ 100 and number of specimens per site (n) ≥ 5 is consistent with a geocentric axial dipole field and shows smaller inclination anomaly (ΔI=‐0.4°) than predicted by global compilations and PSV models. Re‐examination of the inclination anomaly in the global compilation using different calculation methods and selection criteria suggests that inclination anomaly values are affected by: (1) inclusion of poor quality data, (2) averaging data by latitude bins and (3) the way the inclination anomaly is calculated.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract The Jovian Auroral Distributions Experiment Ion sensor (JADE‐I) on Juno is a plasma instrument that measures the energy‐per‐charge (E/Q) distribution of 0.01 to 46.2 keV/q ions over a mass‐per‐charge (M/Q) range of 1 – 64 amu/q. However, distinguishing O+ and S2+ from JADE‐I's measurements is a challenging task due to similarities in their M/Q (≈ 16 amu/q). Because of this, O+ and S2+ have not been fully resolved in the in‐situ measurements made by plasma instruments at Jupiter (e.g., Voyager PLS and Galileo PLS) and their relative ratios has been studied using physical chemistry models and UV remote observations. To resolve this ambiguity, a ray‐tracing simulation combined with carbon foil effects is developed and used to obtain instrument response functions for H+, O+, O2+, O3+, Na+, S+, S2+, and S3+. The simulation results indicate that JADE‐I can resolve the $M/Q$ ambiguity between O+ and S2+ due to a significant difference in their charge state modification process and a presence of a large electric potential difference (≈ 8 kV) between its carbon foils and MCPs. A forward model based on instrument response functions and eight convected kappa distributions is then used to obtain ion properties at the equatorial plasma sheet (≈ 36 jovian radii) in the pre‐dawn sector of magnetosphere. The number density ratio between O+ and S2+ for the selected plasma sheet crossings ranges from 0.2 to 0.7 (mean value 0.37 ± 0.12) and the number density ratio between total oxygen ions to total sulfur ions ranges from 0.2 to 0.6 (0.41 ±0.09).
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Abstract The low‐altitude, high‐velocity trajectory of the Juno spacecraft enables the Jovian Auroral Distributions Experiment to make the first in situ observations of the high‐latitude ionospheric plasma. Ions are observed to energies below 1 eV. The high‐latitude ionospheric ions are observed simultaneously with a loss cone in the magnetospheric ions, suggesting precipitating magnetospheric ions contribute to the heating of the upper ionosphere, raising the scale height, and pushing ionospheric ions to altitudes of 0.5 RJ above the planet where they are observed by Jovian Auroral Distributions Experiment. The source of the magnetospheric ions is tied to the Io torus and plasma sheet, indicated by the cutoff seen in both the magnetospheric and ionospheric plasma at the Io M‐shells. Equatorward of the Io M‐shell boundary, the ionospheric ions are not observed, indicating a drop in the scale height of the ionospheric ions at those latitudes.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract Previous work has shown that the Madden‐Julian Oscillation (MJO) can influence the North Atlantic Oscillation (NAO) via a Rossby wave teleconnection that propagates through the troposphere (i.e., a tropospheric pathway). In addition, recent work suggests that the MJO can influence the stratospheric polar vortex, which is also known to influence the tropospheric NAO—thus, there likely exists a stratospheric pathway for MJO influence as well. Here, we apply two methods to shed more light on the pathways linking the MJO to the NAO. First, we use a traditional approach in climate science based on analyzing conditional probabilities. Second, we use methods from causal discovery theory based on probabilistic graphical models. Together, these two analysis approaches reveal that the MJO can impact the NAO via both a tropospheric and stratospheric pathway. The stratospheric pathway is shown to come about in two ways: First, both methods show that the MJO itself influences the strength of the stratospheric polar vortex on a timescale of ∼10 days, and then 5 days later the vortex can drive changes in the NAO. Second, the state of the stratospheric polar vortex acts to condition the NAO to be conducive (or not) to MJO influence. When the vortex is in a state that opposes the expected NAO response to the MJO, we find little influence of the MJO on the NAO, however, when the vortex supports the expected NAO response, the NAO is up to 30% more likely to be in a particular state following active MJO periods.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Lightning streamers and leaders need thermal electrons to initiate, but free electrons are extremely rare in the wet air of a thundercloud. Here we analyze the probabilities that high electron densities occur in extensive air showers. We argue that relevant air showers are created by cosmic particles with energies between 1015 and 1017 eV impinging onto our atmosphere. We simulate a large number of air showers, and perform a stochastic analysis of their results. We present the available densities of thermal electrons as a function of altitude, time interval and considered area, while neglecting effects of local electric fields. We find that free electron densities at altitudes between 5 and 13 km can reach values of order 103 cm−3, but only in shower cores with a radius on centimeter scale. Above 6 km, the availability of extreme free electron densities decreases significantly with increasing altitude. Recent measurements by Rison et al. [2016] indicate that several streamers must have been triggered simultaneously during discharge inception, and we suggest that an extensive air shower could have been the trigger. Rison's measurements show further that the streamers are laterally separated by several tens of meters; so they must have been triggered by electron densities as low as 1 cm−3. Such low electron densities demand a stochastic approach to streamer initiation near hydrometeors.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, EarlyView.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Abstract High latitude warming and permafrost thaw will expose vast stores of deep soil organic carbon (SOC) to decomposition. Thaw also changes water movement causing either wetter or drier soil. The fate of deep SOC under different thaw and moisture conditions is unclear. We measured weekly growing‐season δ13C of ecosystem respiration (Recoδ13C) across thaw and moisture conditions (Shallow‐Dry; Deep‐Dry; Deep‐Wet) in a soil warming manipulation. Deep SOC loss was inferred from known δ13C signatures of plant shoot, root, surface soil, and deep soil respiration. In addition, a 2‐year‐old vegetation removal treatment (No Veg) was used to isolate surface and deep SOC decomposition contributions to Reco. In No Veg, seasonal Recoδ13C indicated that deep SOC loss increased as the soil column thawed, while in vegetated areas, root contributions appeared to dominate Reco. The Recoδ13C differences between Shallow‐Dry and Deep‐Dry were significant but surprisingly small. This most likely suggests that, under dry conditions, soil warming stimulates root and surface SOC respiration with a negative 13C signature that opposes the more positive 13C signal from increased deep SOC respiration. In Deep‐Wet conditions, Recoδ13C suggests reduced deep SOC loss but could also reflect altered diffusion or methane (CH4) dynamics. Together, these results demonstrate that frequent Recoδ13C measurements can detect deep SOC loss and that plants confound the signal. In future studies, soil profile δ13C measurements, vegetation removal across thaw gradients, and isotopic effects of CH4 dynamics could further deconvolute deep SOC loss via surface Reco.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract The Juno spacecraft crossed Jupiter's bow shock and into the magnetosheath on June 24, 2016. It then went into 53‐day polar orbits with its apojoves at 113 Jovian radii on Jupiter's dawn side. These orbits have given us a unique opportunity to survey Jupiter's dawn magnetosheath. Using data from the Jovian Auroral Distributions Experiment, the Magnetic Field Investigation, and the Waves Investigation, we have identified 91 magnetosheath crossings for a total of 48.2 days of data. We present the statistical properties of the magnetosheath plasma, including density, velocity, magnetic field strength, temperature, plasma beta, pressures, and Mach numbers. We then show correlations between these various parameters. We confirm the rotation of the magnetic field to align with Jupiter's spin axis and find that this rotation correlates with several of the plasma properties, including magnetic field strength and plasma flow velocity. Finally, we discuss how these results can affect magnetic reconnection and the Kelvin‐Helmholtz instability at Jupiter's dawn magnetopause boundary.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract Many problems in climate science require extracting forced signals from a background of internal climate variability. We demonstrate that artificial neural networks (ANNs) are a useful addition to the climate science “toolbox” for this purpose. Specifically, forced patterns are detected by an ANN trained on climate model simulations under historical and future climate scenarios. By identifying spatial patterns that serve as indicators of change in surface temperature and precipitation, the ANN can determine the approximate year from which the simulations came without first explicitly separating the forced signal from the noise of both internal climate variability and model uncertainty. Thus, the ANN indicator patterns are complex, nonlinear combinations of signal and noise and are identified from the 1960s onward in simulated and observed surface temperature maps. This approach suggests that viewing climate patterns through an artificial intelligence (AI) lens has the power to uncover new insights into climate variability and change.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...