ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (1)
  • GEOPHYSICS
  • 2015-2019  (1)
  • 1975-1979
  • 1965-1969
  • 2018  (1)
Collection
Keywords
Years
  • 2015-2019  (1)
  • 1975-1979
  • 1965-1969
Year
  • 1
    Publication Date: 2019-07-13
    Description: We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of A (sub GWB) 〈 1.45 10 (exp -15) at a frequency of f=1 yr(exp -1) for a fiducial f (exp -2/3) power-law spectrum and with interpulsar correlations modeled. This is a factor of approximately 2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH-galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of G (sub mu) 〈 5.3 10(exp -11) - a factor of approximately 2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is omega (sub GWB)(f) h (exp 2) 〈 3.4 10 (exp -10).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN59128 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 859; 1; 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...