ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (4)
  • 2005-2009
  • 2018  (4)
  • 1
    Publication Date: 2018-04-01
    Description: To characterize the along-strike structural variations of the Juan de Fuca (JdF) Plate as it enters the Cascadia subduction zone, we present prestack time migrated multichannel seismic reflection images of the JdF Plate along a 400-km-long trench-parallel transect extending from 44.3°N to 47.8°N. Beneath the 1.8–3.0-km-thick sediment cover, our data reveal basement topographic anomalies associated with a 1.2-km-high seamount and in the vicinity of propagator wakes (390–540-m relief). Weak Moho reflections are imaged beneath the propagator wakes and coincide with reduced Vp in the lower crust and/or uppermost mantle. The inferred locations of propagator wakes in the downgoing plate collocate with some of the boundaries of episodic tremor and slip events. We propose that the structural and hydration heterogeneities associated with these features could lead to anomalous plate interface properties and contribute to episodic tremor and slip segmentation. Intracrustal reflections with apparent dips (20°–30°) consistent with subduction bending normal faults change near 45.8°N, from northward dipping reflections confined to the middle crust in the north to antithetic reflections through the crust in the south, coinciding with a Vp reduction in the lower crust. These observations indicate more extensive faulting deformation and associated hydration of the JdF Plate south of 45.8°N, which likely results from variations of slab dip and resistance to subduction across 46°N. Basement offsets and abrupt depth/amplitude changes in Moho reflections are imaged beneath the four major WNW trending strike-slip faults that cross the Cascadia deformation front, providing strong evidence of a lower plate origin for these faults. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-01
    Description: Detailed images of the midcrustal magmatic system beneath the East Pacific Rise (8°20′–10°10′N) are obtained from 2-D and 3-D-swath processing of along axis seismic data and are used to characterize properties of the axial crust, cross-axis variations, and relationships with structural segmentation of the axial zone. Axial magma lens (AML) reflections are imaged beneath much of the ridge axis (mean depth 1,640 ± 185 m), as are deeper sub-AML (SAML) reflections (brightest events ~100–800 m below AML). Local shallow regions in the AML underlie two regions of shallow seafloor depth from 9°40′–55′N and 8°26′–33′N. Enhanced magma replenishment at present beneath both sites is inferred and may be linked to nearby off-axis volcanic chains. SAML reflections, which are observed primarily from 9°20′ to 10°05′N, indicate a finely segmented magma reservoir similar to the AML above, composed of subhorizontal, 2- to 7 km-long AML segments, often with stepwise changes in reflector depth from one segment to the next. We infer that these melt bodies are related to short-lived melt instability zones. In many locations including where seismic constraints are strongest the intermediate scale (~15–40 km) structural segmentation of the ridge axis identified in this region coincides with (1) changes in average thickness of layer 2A (by 10%–15%), (2) changes in average depth of AML (〈100 m), and (3) with the spacing of punctuated low velocity zones mapped in the uppermost mantle. The ~6 km dominant length of multiple AML segments within each of the larger structural segments may reflect the spacing of local sites of ascending magma from discrete melt reservoirs pooled beneath the crust. ©2018. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123 (2018): 3122-3146, doi:10.1002/2017JB015059.
    Description: To characterize the along‐strike structural variations of the Juan de Fuca (JdF) Plate as it enters the Cascadia subduction zone, we present prestack time migrated multichannel seismic reflection images of the JdF Plate along a 400‐km‐long trench‐parallel transect extending from 44.3°N to 47.8°N. Beneath the 1.8–3.0‐km‐thick sediment cover, our data reveal basement topographic anomalies associated with a 1.2‐km‐high seamount and in the vicinity of propagator wakes (390–540‐m relief). Weak Moho reflections are imaged beneath the propagator wakes and coincide with reduced Vp in the lower crust and/or uppermost mantle. The inferred locations of propagator wakes in the downgoing plate collocate with some of the boundaries of episodic tremor and slip events. We propose that the structural and hydration heterogeneities associated with these features could lead to anomalous plate interface properties and contribute to episodic tremor and slip segmentation. Intracrustal reflections with apparent dips (20°–30°) consistent with subduction bending normal faults change near 45.8°N, from northward dipping reflections confined to the middle crust in the north to antithetic reflections through the crust in the south, coinciding with a Vp reduction in the lower crust. These observations indicate more extensive faulting deformation and associated hydration of the JdF Plate south of 45.8°N, which likely results from variations of slab dip and resistance to subduction across 46°N. Basement offsets and abrupt depth/amplitude changes in Moho reflections are imaged beneath the four major WNW trending strike‐slip faults that cross the Cascadia deformation front, providing strong evidence of a lower plate origin for these faults.
    Description: NSF Grant Numbers: OCE 1029411, 1029305
    Description: 2018-09-30
    Keywords: Cascadia subduction zone ; Juan de Fuca Plate ; Multichannel seismic reflection imaging ; Subduction bending faulting ; Propagator wakes ; Strike-slip faults
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...