ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to characterize modern and ancient surface environments. Curiosity executed a two-phase campaign to study the morphology, activity, physical properties, and chemical and mineralogical composition of the Bagnold Dune Field, an active eolian dune field on the lower slopes of Aeolis Mons (Mount Sharp). Detectable aspects of dune sand mineralogy have been examined from orbit with the visible/short-wave infrared spectrometer CRISMand the thermal-infrared spectrometers THEMIS and TES. CRISM data demonstrate variations in plagioclase, pyroxene, and olivine abundances across the dune field. Curiosity analyzed sediments from two locations in the dune field to evaluate the causes of the mineralogical differences observed from orbit. The Gobabeb sample was collected from Namib Dune, a barchanoidal dune on the upwind margin of the dune field, and the Ogunquit Beach sample was collected from the Mount Desert Island sand patch located downwind from Namib. These samples were sieved to 〈150 m and delivered to the CheMin X-ray diffraction instrument for quantitative mineralogical analysis. CRISM-derived mineralogy of the Namib Dune and Mount Desert Island and CheMin-derived mineralogy of the Gobabeb and Ogunquit Beach samples can be used in a value-added manner to interpret grain segregation at the bedform to dune-field scale and evaluate contributions from local sediment sources. Models of CRISM data demonstrate that Mount Desert Island is more enriched in olivine and less enriched in plagioclase than Namib dune, suggesting that fine-grained mafic sediments are preferentially mobilized downwind. Curiosity data indicate olivine also forms a coarse lag on the lee sides of barchanoidal dunes. Minor abundances of hematite, quartz, and anhydrite and small differences in the crystal chemistry of plagioclase and pyroxene derived from CheMin data suggest that sediments from the underlying lacustrine rocks also contribute to the Bagnold sands.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN61288 , Geological Society of America Annual Meeting; Nov 04, 2018 - Nov 07, 2018; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN55973 , Lunar and Planetary Science Conference; Mar 19, 2018 - Mar 23, 2018; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The leading, but contentious, model for lunar impact history includes a pronounced increase in impact events at around 3.9 Ga. This late heavy bombardment would have scarred Mars and the terrestrial planets, influenced the course of biologic evolution on the early Earth, and rearranged the very architecture of our Solar System. But what if it's not true? In the last decade, new observations and sample analyses have reinterpreted basin ages and "pulled the pin" on the cataclysm - we may only have the age of one large basin (Imbrium). The Curie mission would constrain the onset of the cataclysm by determining the age of a major pre-Imbrium lunar basin (Nectaris or Crisium), characterize new lunar lithologies far from the Apollo and Luna landing sites, including the basalts in the basin-filling maria and olivine-rich lithologies in the basin margins, and provide a unique vantage point to assess volatiles in the lunar regolith from dawn to dusk.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN54186 , Lunar and Planetary Science Conference; Mar 19, 2018 - Mar 23, 2018; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Final Document is attached. Introduction: The Mars Science Laboratory Curi-osity rover landed in Gale crater in August 2012 to search for habitable enironments preserved in the rocks and sediments on the lower slopes of Aeolis Mons (i.e., Mount Sharp). Along the traverse, Curiosity encountered an active aeolian sand sheet, informally known as the Bagnold dune field. Orbital CRISM vis/near-IR data suggest that there are varying abun-dances of olivine and pyroxene across the dune field, where the barchan dunes on the edge of the dune field have stronger olivine signatures than the linear dunes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN53588 , Lunar and Planetary Science Conference; Mar 19, 2018 - Mar 23, 2018; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We present the first comprehensive set of lunar exospheric line width and line width derived effective temperatures as a function of lunar phase (66 waxing phase to 79 waning phase). Data were collected between November 2013 and May 2014 during six observing runs at the National Solar Observatory McMath-Pierce Solar Telescope by applying high-resolution Fabry-Perot spectroscopy (R ~ 180,000) to observe emission from exospheric sodium (5,889.9509 , D2 line). The 3-arc min field of view of the instrument, corresponding to ~336 km at the mean lunar distance (384,400 km), was positioned at several locations off the lunar limb; only equatorial observations taken out to 950 km are presented here. We find the sodium effective temperature distribution to be approximately a symmetric function of lunar phase with respect to full Moon. Within magnetotail passage we find temperatures in the range of 2500-9000 K. For phase angles greater than 40deg we find that temperatures flatten out to ~1700 K.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN61679 , Journal of Geophysical Research: Planets (ISSN 2169-9097) (e-ISSN 2169-9100); 123; 9; 2430-2444
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We perform a survey of 1-Hz waves at Mars utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observations for a Martian year. We find that the 1-Hz wave occurrence rate shows an apparent variation caused by masking of the waves by background turbulence during the times when the background turbulence levels are high. To correct for this turbulence masking, we select waves that occur in time intervals where the background turbulence levels are low. We find that the extreme ultraviolet flux does not affect the wave occurrence rate significantly, suggesting that the newly born pickup ions originating in the Mars's exosphere contribute minimally to the 1-Hz wave generation. We find that the wave occurrence rates are higher for low Mach numbers and low beta values than for high Mach numbers and high beta values. Further, we find that a high percentage of 1-Hz waves satisfy the group-standing condition, which suggests that a high percentage of the waves seen as monochromatic waves in the spacecraft frame can be broadband waves in the solar wind frame that have group velocities nearly equal and opposite to the solar wind velocity. We infer that the wave occurrence rate trends with the Mach number and proton beta are a consequence of how the Mach numbers and beta values influence the wave generation and damping or how those parameters affect the group-standing condition. Finally, we find that the 1-Hz waves are equally likely to be found in both the quasi-parallel and the quasi-perpendicular foreshock regions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN60517 , Journal of Geophysical Research: Space Physics (ISSN 2169-9402) (e-ISSN 2169-9380); 123; 5; 3460-3476
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: NASA recently selected the Comet Astrobiology Exploration Sample Return (CAESAR) mission for Phase A study in the New Frontiers Program. This mission will acquire and return to Earth for laboratory analysis at least 80 g of surface material from the nucleus of comet 67P/Churyumov-Gerasimenko (hereafter 67P). CAESAR will characterize the surface region sampled, preserve the sample in a pristine state, and return evolved volatiles by capturing them in a separate gas reservoir. The system protects both volatile and non-volatile components from contamination or alteration thatwould hamper their scientific analysis. Laboratory analyses of comet samples provide unparalleled knowledge about the presolar history through the initial stages of planet formation to the origin of life.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN58563 , International Workshop on Instrumentation for Planetary Missions (IPM) 2018; Sep 12, 2018 - Sep 14, 2018; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN53573 , LPI Contrib. No. 2083 , Lunar and Planetary Science Conference; Mar 19, 2018 - Mar 23, 2018; The Woodlands, Tx; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The relationship between electron energy flux and the characteristic energy of electron distributions in the main auroral loss cone bridges the gap between predictions made by theory and measurements just recently available from Juno. For decades such relationships have been inferred from remote sensing observations of the Jovian aurora, primarily from the Hubble Space Telescope, and also more recently from Hisaki. However, to infer these quantities, remote sensing techniques had to assume properties of the Jovian atmospheric structure - leading to uncertainties in their profile. Juno's arrival and subsequent auroral passes have allowed us to obtain these relationships unambiguously for the first time, when the spacecraft passes through the auroral acceleration region. Using Juno /Jupiter Energetic particle Detector Instrument (JEDI), an energetic particle instrument, we present these relationships for the 30-kiloelectronvolts to 1-megaelectronvolts electron population. Observations presented here show that the electron energy flux in the loss cone is a nonlinear function of the characteristic or mean electron energy and supports both the predictions from Knight (1973, https://doi.org/10.1016/0032-0633(73)90093-7) and magnetohydrodynamic turbulence acceleration theories (e.g., Saur et al., 2003, https://doi.org/10.1029/2002GL015761). Finally, we compare the in situ analyses of Juno with remote Hisaki observations and use them to help constrain Jupiter's atmospheric profile. We find a possible solution that provides the best agreement between these data sets is an atmospheric profile that more efficiently transports the hydrocarbons to higher altitudes. If this is correct, it supports the previously published idea (e.g., Parkinson et al., 2006, https://doi.org/10.1029/2005JE002539) that precipitating electrons increase the hydrocarbon eddy diffusion coefficients in the auroral regions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN63152 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 123; 9; 7554-7567
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-05-22
    Description: The north polar cap (NPC) on Mars is the major reservoir of atmospheric water (H2O) currently on Mars. The retrieval and monitoring of atmospheric water vapor abundance are crucial for tracking the cycle of water above the NPC. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) has provided a wealth of data that extend over 5 + Martian years, covering the time period between 2006 and 2016. CRISM is ideally suited for spring and summer observations of the north polar region (latitudes poleward of 60 N). The retrievals of water vapor column abundances over this extended period of time were performed over both ice-free and water ice covered surfaces, extending the coverage of the water vapor maps to include the permanent cap, where a maximum value of 90 precipitable micrometers (prm) is retrieved, as compared to 60 prm over ice-free regions in the North Polar Region. Away from summertime maximum, modest interannual variability in the water vapor abundance is observed. Zonal averages over all the observed Martian years combined show a developing water front that shifts northward towards summer, before dissipating over the permanent cap during mid-summer. A prominent feature at latitudes around 75 N shows large abundances of water vapor, indicating a water vapor annulus encircling the retreating edge of the seasonal polar cap during late spring. Meridional transport of water modeled here show that the annulus may be a result of the convergence of water vapor from both south and north along the retreating edge of the NPC.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN67997 , Icarus (ISSN 0019-1035); 321; 722-735
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...