ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (10)
  • AGU (American Geophysical Union)  (10)
  • 2015-2019  (10)
  • 2019  (3)
  • 2018  (7)
  • 1
    Publication Date: 2021-02-08
    Description: We reanalyze existing paleodata of global mean surface temperature ΔTg and radiative forcing ΔR of CO2 and land ice albedo for the last 800,000 years to show that a state‐dependency in paleoclimate sensitivity S, as previously suggested, is only found if ΔTg is based on reconstructions, and not when ΔTg is based on model simulations. Furthermore, during times of decreasing obliquity (periods of land‐ice sheet growth and sea level fall) the multi‐millennial component of reconstructed ΔTg diverges from CO2, while in simulations both variables vary more synchronously, suggesting that the differences during these times are due to relatively low rates of simulated land ice growth and associated cooling. To produce a reconstruction‐based extrapolation of S for the future we exclude intervals with strong ΔTg‐CO2 divergence and find that S is less state‐dependent, or even constant (state‐independent), yielding a mean equilibrium warming of 2–4 K for a doubling of CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: 234Th measurements are widely used to estimate the downward carbon flux of particles via the oceanic Biological Pump. Carbon export is evaluated from 234Th-238U disequilibrium assuming either steady state (SS) conditions, or including a non-SS (NSS) correction. We use a novel stochastic simulation to quantify the temporal variation of vertical carbon and 234Th (dissolved and particulate) concentration profiles with high temporal resolution. We calculate seasonal export as if in situ measured with sediment trap and SS- and NSS-234Th approaches and quantify the periods of validity for SS/NSS conditions defined in previous works. The SS approach is valid throughout the entire season in oligotrophic regions. In temperate regions, the SS introduces a bias in the export if sampling takes place outside specific temporal windows. Windows of validity range from days in short blooms of ~15-day duration to weeks in blooms longer than ~30 days.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Eos: Earth & Space Science News, 99 .
    Publication Date: 2020-01-30
    Description: Several international initiatives are working to stitch together data describing solar forcing of Earth’s climate. Their objective is to improve understanding of climate response to solar variability...
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Tectonics, 37 (10). pp. 3352-3377.
    Publication Date: 2021-03-19
    Description: The Alboran Basin in the westernmost Mediterranean hosts the orogenic boundary between the Iberian and African plates. Although numerous geophysical studies of crustal structure onshore Iberia have been carried out during the last decade, the crustal structure of the Alboran Basin has comparatively been poorly studied. We analyze crustal‐scale images of a grid of new and reprocessed multichannel seismic profiles showing the tectonic structure and variations in the reflective character of the crust of the basin. The nature of the distinct domains has been ground‐truthed using available basement samples from drilling and dredging. Our results reveal four different crustal types ‐domains‐ of the Alboran Basin: a) a thin continental crust underneath the West Alboran and Malaga basins, which transitions to b) a magmatic arc crust in the central part of the Alboran Sea and the East Alboran Basin, c) the North‐African continental crust containing the Pytheas and Habibas sub‐basins, and d) the oceanic crust in the transition towards the Algero‐Balearic Basin. The Alboran Basin crust is configured in a fore‐arc basin (West Alboran and Malaga basins), a magmatic arc (central and East Alboran), and a back‐arc system in the easternmost part of the East Alboran Basin and mainly Algero‐Balearic Basin. The North‐African continental crust is influenced by arc‐related magmatism along its edge, and was probably affected by strike‐slip tectonics during westward migration of the Miocene subduction system. The distribution of active tectonic structures in the current compressional setting generally corresponds to boundaries between domains, possibly representing inherited lithospheric‐scale weak structures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-12-17
    Description: One of the most dramatic signs of ongoing global change is the mass loss of the Greenland Ice Sheet and the resulting rise in sea level, whereby most of the recent ice sheet mass loss can be attributed to an increase in meltwater runoff. The retreat and thinning of Greenland glaciers has been caused by rising air and ocean temperatures over the past decades. Despite the global scale impact of the changing ice sheet balance, estimates of glacial runoff in Greenland rarely extend past several decades, thus limiting our understanding of long-term glacial response to temperature. Here we present a 42-year long annually resolved red coralline algal Mg/Ca proxy temperature record from a southwestern Greenland fjord, with temperature ranging from 1.5 to 4 °C (standard error = 1.06 °C). This temperature time series in turn tracks the general trend of glacial runoff from four West Greenland glaciers discharging freshwater into the fjord (all p 〈 0.001). The algal time series further exhibits significant correlations to Irminger Sea temperature patterns, which are transmitted to western Greenland fjords via the West Greenland Current. The 42-year long record demonstrates the potential of annual increment forming coralline algae, which are known to live up to 650 years and which are abundant along the Greenland coastline, for reconstructing time series of sea surface temperature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Ground-breaking measurements from the ocean observatories initiative Irminger Sea surface mooring (60°N, 39°30′W) are presented that provide the first in situ characterization of multiwinter surface heat exchange at a high latitude North Atlantic site. They reveal strong variability (December 2014 net heat loss nearly 50% greater than December 2015) due primarily to variations in frequency of intense short timescale (1–3 days) forcing. Combining the observations with the new high resolution European Centre for Medium Range Weather Forecasts Reanalysis 5 (ERA5) atmospheric reanalysis, the main source of multiwinter variability is shown to be changes in the frequency of Greenland tip jets (present on 15 days in December 2014 and 3 days in December 2015) that can result in hourly mean heat loss exceeding 800 W/m2. Furthermore, a new picture for atmospheric mode influence on Irminger Sea heat loss is developed whereby strongly positive North Atlantic Oscillation conditions favor increased losses only when not outweighed by the East Atlantic Pattern.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: Large reservoirs of methane present in Arctic marine sediments are susceptible to rapid warming, promoting increasing methane emissions. Gas bubbles in the water column can be detected, and flow rates can be quantified using hydroacoustic survey methods, making it possible to monitor spatiotemporal variability. We present methane (CH4) bubble flow rates derived from hydroacoustic data sets acquired during 11 research expeditions to the western Svalbard continental margin (2008-2014). Three seepage areas emit in total 725-1,125 t CH4/year, and bubble fluxes are up to 2 kg.m(-2).year (-1). Bubble fluxes vary between different surveys, but no clear trend can be identified. Flux variability analyses suggest that two areas are geologically interconnected, displaying alternating flow changes. Spatial migration of bubble seepage was observed to follow seasonal changes in the theoretical landward limit of the hydrate stability zone, suggesting that formation/dissociation of shallow hydrates, modulated by bottom water temperatures, influences seafloor bubble release. Plain Language Summary It has been speculated that the release of methane (a potent greenhouse gas) from the seafloor in some Arctic Ocean regions is triggered by warming seawater. Emissions of gas bubbles from the seafloor can be detected by ship-mounted sonars. In 2008, a methane seepage area west of Svalbard was hydroacoustically detected for the first time. This seepage was hypothesized to be caused by dissociation of hydrates (ice-like crystals consisting of methane and water) due to ocean warming. We present an analysis of sonar data from 11 surveys conducted between 2008 and 2014. This study is the first comparison of methane seepage-related hydroacoustic data over such a long period. The hydroacoustic mapping and quantification method allowed us to assess the locations and intensity of gas bubble release, and how these parameters change over time, providing necessary data for numerical flux and climate models. No trend of increasing gas flow was identified. However, we observed seasonal variations potentially controlled by seasonal formation and dissociation of shallow hydrates. The hydrate formation/dissociation process is likely controlled by changes of bottom water temperatures. Alternating gas emissions between two neighboring areas indicate the existence of fluid pathway networks within the sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-09
    Description: The seasonal and interannual variability of chlorophyll in the Gulf of Mexico open waters is studied using a three‐dimensional coupled physical‐biogeochemical model. A 5 years hindcast driven by realistic open‐boundary conditions, atmospheric forcings, and freshwater discharges from rivers is performed. The use of recent in situ observations allowed an in‐depth evaluation of the model nutrient and chlorophyll seasonal distributions, including the chlorophyll vertical structure. We find that different chlorophyll patterns of temporal variability coexist in the deep basin which thereby cannot be considered as a homogeneous region with respect to chlorophyll dynamics. A partitioning of the Gulf of Mexico open waters based on the winter chlorophyll concentration increase is then proposed. This partition is basically explained by the amount of nutrients injected into the euphotic layer which is highly constrained by the dynamic of the winter mixed layer. The seasonal and interannual variability appears to be affected by the variability of atmospheric fluxes and mesoscale dynamics (Loop Current eddies in particular). Finally, estimates of primary production in the deep basin are provided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-03
    Description: A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...