ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Salt wedge  (1)
  • Hypoxic environment
  • 2015-2019  (1)
  • 2017  (1)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 2015-2019  (1)
Jahr
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 692–712, doi:10.1002/2016JC011738.
    Beschreibung: The Connecticut River is a tidal salt wedge estuary, where advection of sharp salinity gradients through channel constrictions and over steeply sloping bathymetry leads to spatially heterogeneous stratification and mixing. A 3-D unstructured grid finite-volume hydrodynamic model (FVCOM) was evaluated against shipboard and moored observations, and mixing by both the turbulent closure and numerical diffusion were calculated. Excessive numerical mixing in regions with strong velocities, sharp salinity gradients, and steep bathymetry reduced model skill for salinity. Model calibration was improved by optimizing both the bottom roughness (z0), based on comparison with the barotropic tidal propagation, and the mixing threshold in the turbulence closure (steady state Richardson number, Rist), based on comparison with salinity. Whereas a large body of evidence supports a value of Rist ∼ 0.25, model skill for salinity improved with Rist ∼ 0.1. With Rist = 0.25, numerical mixing contributed about 1/2 the total mixing, while with Rist = 0.10 it accounted for ∼2/3, but salinity structure was more accurately reproduced. The combined contributions of numerical and turbulent mixing were quantitatively consistent with high-resolution measurements of turbulent mixing. A coarser grid had increased numerical mixing, requiring further reductions in turbulent mixing and greater bed friction to optimize skill. The optimal Rist for the fine grid case was closer to 0.25 than for the coarse grid, suggesting that additional grid refinement might correspond with Rist approaching the theoretical limit. Numerical mixing is rarely assessed in realistic models, but comparisons with high-resolution observations in this study suggest it is an important factor.
    Beschreibung: NSF Grant Number: OCE 0926427; ONR Grant Number: N00014-08-1-1115
    Beschreibung: 2017-07-28
    Schlagwort(e): Estuary ; Salt wedge ; Numerical mixing ; Turbulence closure ; Numerical model
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...