ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.
    Keywords: Geosciences (General)
    Type: Poster ID: H51E-1311 , GSFC-E-DAA-TN50421 , AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Understanding the impacts of urbanization requires accurate and updatable urban extent maps. Here we present an algorithm for mapping urban extent at global scale using Landsat data. An innovative hierarchical object-based texture (HOTex) classification approach was designed to overcome spectral confusion between urban and nonurban land cover types. VIIRS nightlights data and MODIS vegetation index datasets are integrated as high-level features under an object-based framework. We applied the HOTex method to the GLS-2010 Landsat images to produce a global map of human built-up and settlement extent. As shown by visual assessments, our method could effectively map urban extent and generate consistent results using images with inconsistent acquisition time and vegetation phenology. Using scene-level cross validation for results in Europe, we assessed the performance of HOTex and achieved a kappa coefficient of 0.91, compared to 0.74 from a baseline method using per-pixel classification using spectral information.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN52365 , IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2017); Jul 23, 2017 - Jul 28, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: SMAP (Soil Moisture Active and Passive) radiometer observations at 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model to generate the 9-km SMAP Level-4 Soil Moisture product. This study demonstrates that adding high-resolution radar observations from Sentinel-1 to the SMAP assimilation can increase the spatio-temporal accuracy of soil moisture estimates. Radar observations were assimilated either separately from or simultaneously with radiometer observations. Assimilation impact was assessed by comparing 3-hourly, 9-km surface and root-zone soil moisture simulations with in situ measurements from 9-km SMAP core validation sites and sparse networks, from May 2015 to December 2016. The Sentinel-1 assimilation consistently improved surface soil moisture, whereas root-zone impacts were mostly neutral. Relatively larger improvements were obtained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observations performed best, demonstrating the complementary value of radar and radiometer observations.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN43420 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 44; 12; 6145–6153
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This study investigates some of the benefits and drawbacks of assimilating Terrestrial Water Storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a land surface model over India. GRACE observes TWS depletion associated with anthropogenic groundwater extraction in northwest India. The model, however, does not represent anthropogenic groundwater withdrawals and is not skillful in reproducing the interannual variability of groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the interannual variability in groundwater. But the assimilation also introduces a negative trend in simulated evapotranspiration whereas in reality evapotranspiration is likely enhanced by irrigation, which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow groundwater, when in reality the groundwater is depleted in deeper aquifers. The results emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN42024 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 44; 9; 4107-4115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: In March and April 2012, NASA conducted an airborne lidar campaign based out of Keflavik, Iceland, in support of Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) algorithm development. The survey targeted the Greenland Ice Sheet, Iceland ice caps, and sea ice in the Arctic Ocean during the winter season. Ultimately, the mission, MABEL Iceland 2012, including checkout and transit flights, conducted 14 science flights, for a total of over 80 flight hours over glaciers, icefields, and sea ice.
    Keywords: Geosciences (General)
    Type: NASA/TM-2017-219023 , GSFC-E-DAA-TN43569
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Spatially and temporally continuous estimation of plant photosynthetic carbon fixation (or gross primary production, GPP) is crucial to our understanding of the global carbon cycle and the impact of climate change. Besides spatial, seasonal and interannual variations, GPP also exhibits strong diurnal variations. Satellite retrieved solar-induced chlorophyll fluorescence (SIF) provides a spatially continuous, but temporally discrete measurement of plant photosynthesis, and has the potential to be used to estimate GPP at global scale. However, it remains unclear whether the seasonal time series of SIF snapshots taken at a fixed time of the day can be used to infer daily total GPP variation at spatial and seasonal scales. In this study, we first used GPP estimates from 135 eddy covariance flux sites, covering a wide range of geographic locations and biome types, to investigate the relationship between the instantaneous GPP (GPP(sub inst)) and daily GPP (GPP(sub daily)) on the seasonal course for different times of the day. Latitudinal and diurnal patterns were found to correspond to variations in photosynthetically active radiation (PAR) and light use efficiency (LUE), respectively. We then used the Soil-Canopy Observation Photosynthesis and Energy Balance (SCOPE) model and the FluxCom GPP product to investigate the instantaneous and daily SIF-GPP relationships at five flux tower sites along a latitudinal gradient and at a global scale for different biome types. The results showed that daily SIF had a stronger linear correlation with daily GPP than instantaneous SIF at the seasonal scale, with an instantaneous to daily SIF conversion factor following the latitudinal and seasonal pattern driven by PAR. Our study highlights the necessity to take the latitudinal and diurnal factors into consideration for SIF-GPP relationship analyses or for physiological phenology analyses based on SIF.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN51439 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 205; 276-289
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: New model structure for peatlands results in improved skill metrics (without any parameter calibration) Simulated surface soil moisture strongly affected by new model, but reliable soil moisture data lacking for validation.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN50134 , International Conference on Reanalysis; Nov 13, 2017 - Nov 17, 2017; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...