ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-21
    Description: The Advanced Very High Resolution Radiometer (AVHRR) sensor provides a unique global remote sensing dataset that ranges from the 1980's to the present. Over the years, several efforts have been made on the calibration of the different instruments to establish a consistent land surface reflectance time-series and to augment the AVHRR data record with data from other sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, we present a summary of all the corrections applied to the AVHRR Surface Reflectance and NDVI Version 4 Product, developed in the framework of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program. These corrections result from assessment of the geo-location, improvement of the cloud masking and calibration monitoring. Additionally, we evaluate the performance of the surface reflectance over the AERONET sites by a cross-comparison with MODIS, which is an already validated product, and evaluation of a downstream Leaf Area Index (LAI) product. We demonstrate the utility of this long time-series by estimating the winter wheat yield over the USA. The methods developed by [1] and [2] are applied to both the MODIS and AVHRR data. Comparison of the results from both sensors during the MODIS-era shows the consistency of the dataset with similar errors of 10%. When applying the methods to AVHRR historical data from the 1980's, the results have errors equivalent to those derived from MODIS.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN40735 , Remote Sensing (e-ISSN 2072-4292); 9; 3; 296
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN50300 , American Geophysical Union (AGU) 2017 Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If t(1v) and t(1vg) are conserved where t is optical thickness, v the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1wg)factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1w)(1(exp. 1/2)wg)]12, also tend to be similar.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN45776 , Journal of Quantitative Spectroscopy and Radiative Transfer (ISSN 0022-4073); 194; 45-57
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Ozone Monitoring Instrument (OMI) aboard NASA's Aura mission measures ozone column and profile, aerosols, clouds, surface UV irradiance, and the trace gases including NO2, SO2, HCHO, BrO, and OClO using UltraViolet electromagnetic spectrum (280 - 400 nm) with a daily global coverage and a pixel spatial resolution of 13 km 24 km at nadir, and it's been one of the key instruments to study the Earth's atmospheric composition and chemistry. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. Compared to its predecessor MERRA, MERRA-2 is enhanced with more aspects of the Earth system among which is aerosol assimilation. When comparing between satellite pixel measurements and modeled grid data, how to properly handle counterpart pairing is critical considering their spatial and temporal variations. The comparison between satellite and model data by simply using Level 3 (L3) products may result biases due to lack of detailed temporal information. It has been preferred to inter-compare or implement satellite derived physical quantity (i.e., Level 2 (L2) Swath type) directly with/to model measurements with higher temporal and spatial resolution as possible. However, this has posed a challenge in the community to handle. Rather than directly handling the L2 or L3 data, there is a Level 2G (L2G) product conserving L2 pixel scientific data quality but in Grid type with the global coverage. In this presentation, we would like to demonstrate the optimal utilization of OMI L2G daily aerosol products by comparing with MERRA-2 hourly aerosol simulations matched well in both space and time.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN42520 , International A-Train Symposium; Apr 19, 2017 - Apr 21, 2017; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Between 1964 and 1978, NASA launched a series of seven Nimbus meteorological satellites which provided Earth observations for 30 years. These satellites, carrying a total of 33 instruments to observe the Earth at visible, infrared, ultraviolet, and microwave wavelengths, revolutionized weather forecasting, provided early observations of ocean color and atmospheric ozone, and prototyped location-based search and rescue capabilities. The Nimbus series paved the way for a number of currently operational systems such as the EOS (Earth Observation System) Terra, Aqua, and Aura platforms. The original data archive includes both magnetic tapes and film media. These media are well past their expected end of life, placing at risk valuable data that are critical to extending the history of Earth observations back in time. GES DISC (Goddard Earth Sciences Data and Information Services Center) has been incorporating these data into a modern online archive by recovering the digital data files from the tapes, and scanning images of the data from film strips. The digital data products were written on obsolete hardware systems in outdated file formats, and in the absence of metadata standards at that time, were often written in proprietary file structures. Through a tedious and laborious process, oft-corrupted data are recovered, and incomplete metadata and documentation are reconstructed.
    Keywords: Earth Resources and Remote Sensing
    Type: AGU Paper IN23D-0111 , GSFC-E-DAA-TN50514 , AGU Fall Meeting 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN50566 , American Geophysical Union (AGU) 2017 Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN50341 , AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN45402 , Annual AIAA/USU Conference on Small Satellite; Aug 05, 2017 - Aug 10, 2017; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...