ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-28
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-24
    Description: Multiple year-round records of bulk and size-segregated composition of aerosol were obtained at the inland site of Concordia located at Dome C in East Antarctica. In parallel, sampling of acidic gases on denuder tubes was carried out to quantify the concentrations of HCl and HNO3 present in the gas phase. These time series are used to examine aerosol present over central Antarctica in terms of chloride depletion relative to sodium with respect to freshly emitted sea-salt aerosol as well as depletion of sulfate relative to sodium with respect to the composition of seawater. A depletion of chloride relative to sodium is observed over most of the year, reaching a maximum of  ∼ 20 ng m−3 in spring when there are still large sea-salt amounts and acidic components start to recover. The role of acidic sulfur aerosol and nitric acid in replacing chloride from sea-salt particles is here discussed. HCl is found to be around twice more abundant than the amount of chloride lost by sea-salt aerosol, suggesting that either HCl is more efficiently transported to Concordia than sea-salt aerosol or re-emission from the snow pack over the Antarctic plateau represents an additional significant HCl source. The size-segregated composition of aerosol collected in winter (from 2006 to 2011) indicates a mean sulfate to sodium ratio of sea-salt aerosol present over central Antarctica of 0.16 ± 0.05, suggesting that, on average, the sea-ice and open-ocean emissions equally contribute to sea-salt aerosol load of the inland Antarctic atmosphere. The temporal variability of the sulfate depletion relative to sodium was examined at the light of air mass backward trajectories, showing an overall decreasing trend of the ratio (i.e., a stronger sulfate depletion relative to sodium) when air masses arriving at Dome C had traveled a longer time over sea ice than over open ocean. The findings are shown to be useful to discuss sea-salt ice records extracted at deep drilling sites located inland Antarctica.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-24
    Description: Multiple year-round (2006–2015) records of the bulk and size-segregated composition of aerosol were obtained at the inland site of Concordia located in East Antarctica. The well-marked maximum of non-sea-salt sulfate (nssSO4) in January (100 ± 28 ng m−3 versus 4.4 ± 2.3 ng m−3 in July) is consistent with observations made at the coast (280 ± 78 ng m−3 in January versus 16 ± 9 ng m−3 in July at Dumont d'Urville, for instance). In contrast, the well-marked maximum of MSA at the coast in January (60 ± 23 ng m−3 at Dumont d'Urville) is not observed at Concordia (5.2 ± 2.0 ng m−3 in January). Instead, the MSA level at Concordia peaks in October (5.6 ± 1.9 ng m−3) and March (14.9 ± 5.7 ng m−3). As a result, a surprisingly low MSA-to-nssSO4 ratio (RMSA) is observed at Concordia in mid-summer (0.05 ± 0.02 in January versus 0.25 ± 0.09 in March). We find that the low value of RMSA in mid-summer at Concordia is mainly driven by a drop of MSA levels that takes place in submicron aerosol (0.3 µm diameter). The drop of MSA coincides with periods of high photochemical activity as indicated by high ozone levels, strongly suggesting the occurrence of an efficient chemical destruction of MSA over the Antarctic plateau in mid-summer. The relationship between MSA and nssSO4 levels is examined separately for each season and indicates that concentration of non-biogenic sulfate over the Antarctic plateau does not exceed 1 ng m−3 in fall and winter and remains close to 5 ng m−3 in spring. This weak non-biogenic sulfate level is discussed in the light of radionuclides (210Pb, 10Be, and 7Be) also measured on bulk aerosol samples collected at Concordia. The findings highlight the complexity in using MSA in deep ice cores extracted from inland Antarctica as a proxy of past dimethyl sulfide emissions from the Southern Ocean.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-04
    Description: The central importance of soil for the functioning of terrestrial systems is increasingly recognized. Critically relevant for water quality, climate control, nutrient cycling and biodiversity, soil provides more functions than just the basis for agricultural production. Nowadays, soil is increasingly under pressure as a limited resource for the production of food, energy and raw materials. This has led to an increasing demand for concepts assessing soil functions so that they can be adequately considered in decision making aimed at sustainable soil management. The various soil science disciplines have progressively developed highly sophisticated methods to explore the multitude of physical, chemical and biological processes in soil. It is not obvious, however, how the steadily improving insight into soil processes may contribute to the evaluation of soil functions. Here we present to a new systemic modeling framework that allows for a consistent coupling between reductionist yet observable indicators for soil functions with detailed process understanding. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. The non-linear character of these interactions produces stability and resilience of soil with respect to functional characteristics. We anticipate that this new conceptional framework will integrate the various soil science disciplines and help identify important future research questions at the interface between disciplines. It allows the overwhelming complexity of soil systems to be adequately coped with and paves the way for steadily improving our capability to assess soil functions based on scientific understanding.
    Electronic ISSN: 2199-3998
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-11
    Description: Multiple year-round (2006–2015) records of the bulk and size-segregated composition of aerosol were obtained at the inland site of Concordia located in East Antarctica. The well-marked maximum of non-sea-salt sulfate (nssSO4) in January (84 ± 25 ng m−3 against 4.4 ± 2.3 ng m−3 in July) is consistent with observations made at the coast (280 ± 78 ng m−3 in January against 16 ± 9 ng m−3 in July at Dumont d’Urville, for instance). In contrast, the well-marked maximum of MSA at the coast in January (60 ± 23 ng m−3 at Dumont d’Urville) is not observed at Concordia (4.6 ± 2.4 ng m−3 in January). Instead, the MSA level at Concordia peaks in October (5.6 ± 1.9 ng m−3) and March (13.2 ± 6.1 ng m−3). As a result, a surprisingly low MSA to nssSO4 ratio (RMSA) is observed at Concordia in mid-summer (0.05 ± 0.02 in January against 0.25 ± 0.09 in March). We find that the low value of RMSA in mid-summer at Concordia is mainly driven by a drop of MSA levels that takes place in submicron aerosol (0.3 µm diameter). The drop of MSA coincides with periods of high photochemical activity as indicated by high ozone levels, strongly suggesting the occurrence of an efficient chemical destruction of MSA over the Antarctic plateau in mid-summer. The relationship between MSA and nssSO4 levels is examined separately for each season and indicates that concentration of non-biogenic sulfate over the Antarctic plateau does not exceed 1 ng m−3 in fall and winter and remains below 5 ng m−3 in spring. This weak non-biogenic sulfate level is discussed in the light of radionuclides (210Pb, 10Be, and 7Be) also measured on bulk aerosol samples collected at Concordia. The findings highlight the complexity in using MSA in deep ice cores extracted from inland Antarctica as a proxy of past DMS emissions from the southern ocean.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-08
    Description: Multiple year-round records of bulk and size-segregated composition of aerosol were obtained at the inland site of Concordia located at Dome C in East Antarctica. In parallel, sampling of acidic gases on denuder tubes was carried out to quantify the concentrations of HCl and HNO3 present in the gas phase. These time-series are used to examine aerosol present over central Antarctica in terms of chloride depletion relative to sodium with respect to freshly emitted sea-salt aerosol as well as depletion of sulfate relative to sodium with respect to the composition of seawater. A depletion of chloride relative to sodium is observed over most of the year, reaching a maximum of ~ 20 ng m−3 in spring when there are still large sea-salt amounts and acidic components start to recover. The role of acidic sulfur aerosol and nitric acid in replacing chloride from sea-salt particles is here discussed. HCl is found to be around twice more abundant than the amount of chloride lost by sea-salt aerosol, suggesting that either HCl is more efficiently transported to Concordia than sea-salt aerosol or reemission from the snow pack over the Antarctic plateau represents an additional significant HCl source. The size-segregated composition of aerosol collected in winter (from 2006 to 2011) indicates a mean sulfate to sodium ratio of sea-salt aerosol present over central Antarctica of 0.16 ± 0.05, suggesting that, on average, the sea-ice and open ocean emissions equally contribute to sea-salt aerosol load of the inland Antarctic atmosphere. The temporal variability of the sulfate depletion relative to sodium was examined at the light of air mass backward trajectories, showing an overall decreasing trend of the ratio (i.e. a stronger sulfate depletion relative to sodium) when air masses arriving at Dome C had travelled a longer time over sea-ice than over open-ocean. The findings are shown to be useful to discuss sea-salt ice records extracted at deep drilling sites located inland Antarctica.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-25
    Description: We measured aerosol size distributions and conducted bulk as well as size segregated aerosol sampling during two summer campaigns in January 2015 and January 2016 at the continental Antarctic station Kohnen (Dronning Maud Land). Physical and chemical aerosol properties differ conspicuously during the episodic impact of an outstanding low pressure system in 2015 (LPS15) compared to the prevailing clear sky conditions: The about three days persisting LPS15, located in the eastern Weddell Sea, was associated with marine boundary layer air mass intrusion, enhanced condensation particle concentrations (1400±700 cm−3 compared to 250±120 cm−3 under clear sky conditions; mean ± SD), occurrence of a new particle formation event exhibiting a continuous growth of particle diameters (Dp) from 12 nm to 43 nm over 44 hours (growth rate 0.6 nm h−1), peaking methane sulfonate (MS−), non-sea salt sulfate (nss-SO42−) and Na+ concentrations (190 ng m−3 MS−, 137 ng m−3 nss-SO42−, and 53 ng m−3 Na+ compared to 24±15 ng m−3, 107±20 ng m−3 and 4.1±2.2 ng m−3, respectively, during clear sky conditions, and finally an increased MS-/nss-SO42− mass ratio ßMS of 0.4 up to 2.3 (0.21±0.1 under clear sky conditions) comparable to typical values found at coastal Antarctic sites. Throughout the observation period a larger part of MS− could be found in super micron aerosol compared to nss-SO42−, i.e. (10±2) % by mass compared to (3.2±2) %, respectively. On the whole, under clear sky conditions aged aerosol characterized by an usually mono-modal size distribution around Dp = 60 nm was observed. Although our observations indicate that sporadic impacts of coastal cyclones were associated with enhanced marine aerosol entry, at large aerosol deposition on-site during austral summer should be dominated by the typical steady clear sky conditions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...