ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Nature  (28)
  • Wiley  (17)
  • 2015-2019  (45)
  • 2010-2014
  • 1975-1979
  • 1950-1954
  • 2017  (45)
  • 1
    Publication Date: 2017-08-17
    Description: Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing Nature Communications, Published online: 16 August 2017; doi:10.1038/s41467-017-00296-y In multiple myeloma, malignant cells expand within bone marrow. Here, the authors use multi-region sequencing in patient samples to analyse spatial clonal architecture and heterogeneity, providing novel insight into multiple myeloma progression and evolution.
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-16
    Description: Identification of the S100 fused-type protein hornerin as a regulator of tumor vascularity Nature Communications, Published online: 15 September 2017; doi:10.1038/s41467-017-00488-6 Angiogenesis is essential for solid tumor progression. Here, the authors interrogate the proteome of pancreatic cancer endothelium via phage display and identify hornerin as a critical protein whose expression is essential to maintain the pancreatic cancer vasculature through a VEGF-independent mechanism.
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-20
    Description: miR-9a modulates maintenance and ageing of Drosophila germline stem cells by limiting N-cadherin expression Nature Communications, Published online: 19 September 2017; doi:10.1038/s41467-017-00485-9 In the Drosophila testis, ageing leads to loss of germline stem cells. Here, the authors show that, during ageing in Drosophila , miR-9a is upregulated in male germline stem cells and regulates their proliferation by targeting N-cadherin.
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-23
    Description: Marine invasion ecology and management have progressed significantly over the last 30 years although many knowledge gaps and challenges remain. The kelp Undaria pinnatifida , or “Wakame,” has a global non-native range and is considered one of the world's “worst” invasive species. Since its first recorded introduction in 1971, numerous studies have been conducted on its ecology, invasive characteristics, and impacts, yet a general consensus on the best approach to its management has not yet been reached. Here, we synthesize current understanding of this highly invasive species and adopt Undaria as a case study to highlight challenges in wider marine invasion ecology and management. Invasive species such as Undaria are likely to continue to spread and become conspicuous, prominent components of coastal marine communities. While in many cases, marine invasive species have detectable deleterious impacts on recipient communities, in many others their influence is often limited and location specific. Although not yet conclusive, Undaria may cause some ecological impact, but it does not appear to drive ecosystem change in most invaded regions. Targeted management actions have also had minimal success. Further research is needed before well-considered, evidence-based management decisions can be made. However, if Undaria was to become officially unmanaged in parts of its non-native range, the presence of a highly productive, habitat former with commercial value and a broad ecological niche, could have significant economic and even environmental benefit. How science and policy reacts to the continued invasion of Undaria may influence how similar marine invasive species are handled in the future. Marine invasion ecology and management have progressed significantly over the last 30 years; however, many knowledge gaps and challenges remain. The invasive kelp Undaria pinnatifida, or “Wakame,” has a global introduced range and is considered one of the world's worst invasive species. Undaria is useful case study to demonstrate that there are still limits in our capacity to understand the dynamics, impacts, and management potential of marine invaders.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-12
    Description: The role that microclimates play on soil decomposition is poorly understood. Though litter decomposition is controlled by climate and substrate quality at coarse spatial scales, at the watershed scale, microclimates mediated by forest structure and landscape position can influence decomposition rates and in turn affect nitrogen cycling. To evaluate the effects of landscape position and vegetation heterogeneity on decomposition, we employed a two-year litterbag study (2011–2013) using yellow birch leaf litter across the Weimer Run watershed, a cool, humid watershed located near Davis, West Virginia. From our results, we created a spatially explicit empirical model that we tested against both a single-pool and three-pool decomposition model, each based on climate and derived from the Long-Term Intersite Decomposition Experiment Team. Initial litter decomposition varied by elevation, with greater rates of decomposition at locations lower in the watershed. Decomposition rates differed by elevation, except during the first winter of the study. No differences in decomposition rates were seen among elevation levels when snowfall was below average for the first winter (2011–2012). During the second winter (2012–2013), elevation levels showed separation in decomposition rates, with higher elevations exhibiting lower decomposition rate. This suggests important controls on decomposition exerted by the presence or absence of snow, inter-annual climate variability, and the interaction of both with topography. Our empirical model showed greater rates of decomposition during early stages of decomposition (〈12 months), but converged with the three-pool decomposition model after 20 months. Plant available nitrogen differed by vegetation cover, largely driven by greater availability of nitrate (NO 3 − ) beneath areas of canopy closure in the forest. Controls on decomposition and nitrogen cycling within the Weimer Run watershed vary spatially by elevation and vegetation cover and are subject to complex interactions and differ from standard models of decomposition. The effect of the inter-annual variance of snow depth on litter decomposition is of note and an important consideration moving forward. Climate-based models of decomposition greatly underestimate initial rates of decomposition, potentially leading to under-accounting and compounded uncertainty.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-02
    Description: Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine-protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014–2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs. Many ecosystems around the world are rapidly deteriorating due to both local and global pressures including climate change, and perhaps none so precipitously as coral reefs. While root causes of human-driven climate change should be addressed, additional solutions are urgently required to ensure coral reefs persist into the future. In this Opinion piece, we address how breeding coral stock with enhanced environmental stress tolerance (assisted evolution) can increase reef resilience and contribute to the success of coral reef restoration efforts. We discuss traits of resilient corals and coral reef ecosystems, and provide guidelines for incorporating assisted evolution into restoration initiatives.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-06-01
    Description: Blocking FSH induces thermogenic adipose tissue and reduces body fat Nature 546, 7656 (2017). doi:10.1038/nature22342 Authors: Peng Liu, Yaoting Ji, Tony Yuen, Elizabeth Rendina-Ruedy, Victoria E. DeMambro, Samarth Dhawan, Wahid Abu-Amer, Sudeh Izadmehr, Bin Zhou, Andrew C. Shin, Rauf Latif, Priyanthan Thangeswaran, Animesh Gupta, Jianhua Li, Valeria Shnayder, Samuel T. Robinson, Yue Eric Yu, Xingjian Zhang, Feiran Yang, Ping Lu, Yu Zhou, Ling-Ling Zhu, Douglas J. Oberlin, Terry F. Davies, Michaela R. Reagan, Aaron Brown, T. Rajendra Kumar, Solomon Epstein, Jameel Iqbal, Narayan G. Avadhani, Maria I. New, Henrik Molina, Jan B. van Klinken, Edward X. Guo, Christoph Buettner, Shozeb Haider, Zhuan Bian, Li Sun, Clifford J. Rosen & Mone Zaidi Menopause is associated with bone loss and enhanced visceral adiposity. A polyclonal antibody that targets the β-subunit of the pituitary hormone follicle-stimulating hormone (Fsh) increases bone mass in mice. Here, we report that this antibody sharply reduces adipose tissue in wild-type mice, phenocopying genetic haploinsufficiency
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-08-08
    Description: Terrestrial ecosystem responses to temperature and precipitation have major implications for the global carbon cycle. Case studies demonstrate that complex terrain, which accounts for more than 50% of Earth's land surface, can affect ecological processes associated with land-atmosphere carbon fluxes. However, no studies have addressed the role of complex terrain in mediating ecophysiological responses of land-atmosphere carbon fluxes to climate variables. We synthesized data from AmeriFlux towers and found that for sites in complex terrain, responses of ecosystem CO 2 fluxes to temperature and precipitation are organized according to terrain slope and drainage area, variables associated with water and energy availability. Specifically, we found that for tower sites in complex terrain, mean topographic slope and drainage area surrounding the tower explained between 51% and 78% of site-to-site variation in the response of CO 2 fluxes to temperature and precipitation depending on the time scale. We found no such organization among sites in flat terrain, even though their flux responses exhibited similar ranges. These results challenge prevailing conceptual framework in terrestrial ecosystem modeling that assumes CO 2 fluxes derive from vertical soil-plant-climate interactions. We conclude that the terrain in which ecosystems are situated can also have important influences on CO 2 responses to temperature and precipitation. This work has implications for about 14% of the total land area of the conterminous US. This area is considered topographically complex and contributes to approximately 15% of gross ecosystem carbon production in the conterminous US.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-20
    Description: Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality, Published online: 19 December 2017; doi:10.1038/s41467-017-02287-5 The Ras/Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways are essential for cancer cell survival. Here, the authors describes a molecule a131 with dual-inhibitory properties, which targets PI5P4K and mitosis, and it is involved in Ras/Raf/MEK/ERK and PI3K/Akt/mTOR crosstalk, thereby causing reversible growth arrest in normal cells and cell death of tumor cells.
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-10
    Description: Satellite remote sensing data have indicated a general ‘greening’ trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. Potential Arctic vegetation can be 5% more than currently estimated through satellite remote sensing. Herbivory accounts for the 5% of biomass discrepancy. Such discrepancy is more profound in regions with high intensity of herbivory.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...