ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Results are presented from a laboratory study on the free-surface signal generated over an array of submerged circular cylinders, representative of submerged aquatic vegetation. We aim to understand whether aquatic ecosystems generate a surface signature that is indicative of both what is beneath the water surface as well as how it is altering the flow. A shear layer forms over the canopy, generating coherent vortex structures which eventually manifest in the free-surface slope field. We connect the vortex properties measured at the surface with measurements of the bulk flow, and show that correlations between these quantities are adequate to create a parameterized model in which the interior velocity profile can be predicted solely from measurements taken at the free surface. Experimental surface observations yield a Strouhal number that is twice the most amplified mode predicted by linear stability theory, suggesting that vortices may evolve between generation at the canopy height and their manifestation at the water surface. Additionally, the surface signal continues evolving with distance downstream, with vortices becoming spread farther apart and the passage frequency gradually decreasing. By the trailing edge of the canopy, surface-impacting boils emerge for canopies with higher submergence ratios, suggesting a transition from coherent two-dimensional rollers to transversely varying structures.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-26
    Description: Results are presented from a laboratory study on the free-surface signal generated over an array of submerged circular cylinders, representative of submerged aquatic vegetation. We aim to understand whether aquatic ecosystems generate a surface signature that is indicative of both what is beneath the water surface as well as how it is altering the flow. A shear layer forms over the canopy, generating coherent vortex structures which eventually manifest in the free-surface slope field. We connect the vortex properties measured at the surface with measurements of the bulk flow, and show that correlations between these quantities are adequate to create a parameterized model in which the interior velocity profile can be predicted solely from measurements taken at the free surface. Experimental surface observations yield a Strouhal number that is twice the most amplified mode predicted by linear stability theory, suggesting that vortices may evolve between generation at the canopy height and their manifestation at the water surface. Additionally, the surface signal continues evolving with distance downstream, with vortices becoming spread farther apart and the passage frequency gradually decreasing. By the trailing edge of the canopy, surface-impacting boils emerge for canopies with higher submergence ratios, suggesting a transition from coherent two-dimensional rollers to transversely varying structures. © Cambridge University Press 2019.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-24
    Description: The ‘Trojan Horse’ underdense plasma photocathode scheme applied to electron beam-driven plasma wakefield acceleration has opened up a path which promises high controllability and tunability and to reach extremely good quality as regards emittance and five-dimensional beam brightness. This combination has the potential to improve the state-of-the-art in accelerator technology significantly. In this paper, we review the basic concepts of the Trojan Horse scheme and present advanced methods for tailoring both the injector laser pulses and the witness electron bunches and combine them with the Trojan Horse scheme. These new approaches will further enhance the beam qualities, such as transverse emittance and longitudinal energy spread, and may allow, for the first time, to produce ultrahigh six-dimensional brightness electron bunches, which is a necessary requirement for driving advanced radiation sources. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-24
    Description: This introductory article is a synopsis of the status and prospects of particle-beam-driven plasma wakefield acceleration (PWFA). Conceptual and experimental breakthroughs obtained over the last years have initiated a rapid growth of the research field, and increased maturity of underlying technology allows an increasing number of research groups to engage in experimental R&D. We briefly describe the fundamental mechanisms of PWFA, from which its chief attractions arise. Most importantly, this is the capability of extremely rapid acceleration of electrons and positrons at gradients many orders of magnitude larger than in conventional accelerators. This allows the size of accelerator units to be shrunk from the kilometre to metre scale, and possibly the quality of accelerated electron beam output to be improved by orders of magnitude. In turn, such compact and high-quality accelerators are potentially transformative for applications across natural, material and life sciences. This overview provides contextual background for the manuscripts of this issue, resulting from a Theo Murphy meeting held in the summer of 2018. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...