ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (27)
  • Forschungsdaten
  • Wiley  (21)
  • Cell Press  (3)
  • MDPI Publishing  (2)
  • American Geophysical Union  (1)
  • 2015-2019  (27)
  • 1965-1969
  • 1945-1949
  • 2019  (14)
  • 2017  (13)
  • Medizin  (13)
  • Geographie  (5)
  • Technik allgemein  (5)
  • Physik  (4)
  • Architektur, Bauingenieurwesen, Vermessung  (1)
Sammlung
  • Artikel  (27)
  • Forschungsdaten
Erscheinungszeitraum
  • 2015-2019  (27)
  • 1965-1969
  • 1945-1949
Jahr
Zeitschrift
Thema
  • 1
    Publikationsdatum: 2019
    Beschreibung: Energy and power system models can be categorized into four levels based on the complexity captured in terms of planning and operation. In the past, power system planning was based on meeting the load duration curve at minimum cost. The increasing share of variable generation (VG) makes operational constraints more important in the planning problem, and there is more and more interest in considering aspects such as sufficient ramping capability, sufficient reserve procurement, power system stability, storage behavior, and the integration of other energy sectors often through demand response assets. In VG integration studies, several methods have been applied to combine the planning and operational timescales. We present a four‐level categorization for the modeling methods, in order of increasing complexity: (1a) investment model only, (1b) operational model only, (2) unidirectionally soft‐linked investment and operational models, (3a) bidirectionally soft‐linked investment and operational models, (3b) operational model with an investment update algorithm, and (4) co‐optimization of investments and operation. The review shows that using a low temporal resolution or only few representative days will not suffice in order to determine the optimal generation portfolio. In addition, considering operational effects proves to be important in order to get a more optimal generation portfolio and more realistic estimations of system costs. However, operational details appear to be less significant than the temporal representation. Furthermore, the benefits and impacts of more advanced modeling techniques on the resulting generation capacity mix significantly depend on the system properties. Thus, the choice of the model should depend on the purpose of the study as well as on system characteristics. This article is categorized under: Wind Power 〉 Systems and Infrastructure Energy Systems Analysis 〉 Economics and Policy Energy Policy and Planning 〉 Economics and Policy
    Print ISSN: 2041-8396
    Digitale ISSN: 2041-840X
    Thema: Energietechnik , Technik allgemein
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019
    Beschreibung: Abstract Many models of incision by bedrock rivers predict water depth and shear stress from discharge; conversely, palaeoflood discharge is sometimes reconstructed from flow depth markers in rock gorges. In both cases assumptions are made about flow resistance. The depth‐discharge relation in a bedrock river must depend on at least two roughness length scales (exposed rock and sediment cover) and possibly a third (sidewalls). A conceptually attractive way to model the depth‐discharge relation in such situations is to partition the total shear stress and friction factor, but it is not obvious how to quantify the friction factor for rough walls in a way that can be used in incision process models. We show that a single flow resistance calculation using a spatially‐averaged roughness length scale closely approximates the partitioning of stress between sediment and rock, and between bed and walls, in idealised scenarios. Both approaches give closer fits to the measured depth‐discharge relations in two small bedrock reaches than can be achieved using a fixed value of Manning's n or the Chézy friction factor. Sidewalls that are substantially rougher or smoother than the bed have a significant effect on the partitioning of shear stress between bed and sidewalls. More research is needed on how best to estimate roughness length scales from observable or measurable channel characteristics.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019
    Beschreibung: Abstract Sediment transport equations typically produce transport rates that are biased by orders of magnitude. A causal component of this inaccuracy is the inability to represent complex grain‐scale interactions controlling entrainment. Grain‐scale incipient motion has long been modelled using geometric relationships based on simplified particle geometry and two‐dimensional (2D) force or moment balances. However, this approach neglects many complexities of real grains, including grain shape, cohesion and the angle of entrainment relative to flow direction. To better represent this complexity, we develop the first vector‐based, fully three‐dimensional (3D) grain rotation entrainment model that can be used to resolve any entrainment formulation in 3D, and which also includes the effect of matrix cohesion. To apply this model we use X‐ray computed tomography to quantify the 3D structure of water‐worked river grains. We compare our 3D model results with those derived from application of a 2D entrainment model. We find that the 2D approach produces estimates of dimensionless critical shear stress ( ) that are an order of magnitude lower than our 3D model. We demonstrate that it is more appropriate to use the c‐axis when calculating 2D projections, which increases values of to more closely match our 3D estimates. The 3D model reveals that the main controls on critical shear stress in our samples are projection of grains, cohesive effects from a fine‐grained matrix, and bearing angle for the plane of rotation (the lateral angle of departure from downstream flow that, in part, defines the grain's direction of pivot about an axis formed by two contact points in 3D). The structural precision of our 3D model demonstrates sources of geometric error inherent in 2D models. By improving flow properties to better replicate local hydraulics in our 3D model, entrainment modelling of scanned riverbed grains has the potential for benchmarking 2D model enhancements. This article is protected by copyright. All rights reserved.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
  • 5
  • 6
    Publikationsdatum: 2019
    Beschreibung: Engaging the local utility and including electrical distribution system design in district master planning can reduce costs and improve performance of sustainable urban districts with high penetrations of renewable energy, but new research tools are needed to facilitate an integrated design. Source: fujisawasst.com/EN/. Recent efforts to reduce energy consumption and greenhouse gas emissions have resulted in the development of sustainable, smart districts with highly energy efficient buildings, renewable distributed energy resources (DERs), and support for alternative modes of transportation. However, there is typically little if any coordination between the district developers and the local utility. Most attention is paid to the district's annual net load and generation without considering their instantaneous imbalance or the connecting network's state. This presents an opportunity to learn lessons from the design of distribution feeders for districts characterized by low loads and high penetrations of DERs that can be applied to the distribution grid at large. The aim of this overview is to summarize current practices in sustainable district planning as well as advances in modeling and design tools for incorporating the power distribution system into the district planning process. Recent developments in the modeling and optimization of district power systems, including their coordination with multi‐energy systems and the impact of high penetration levels of renewable energy, are introduced. Sustainable districts in England and Japan are reviewed as case studies to illustrate the extent to which distribution system planning has been considered in practice. Finally, newly developed building‐to‐grid modeling tools that can facilitate coordinated district and power system design with utility involvement are introduced, along with suggestions for future research directions. This article is categorized under: Wind Power 〉 Systems and Infrastructure Energy Policy and Planning 〉 Systems and Infrastructure Energy Efficiency 〉 Systems and Infrastructure
    Print ISSN: 2041-8396
    Digitale ISSN: 2041-840X
    Thema: Energietechnik , Technik allgemein
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2017-07-29
    Beschreibung: IJERPH, Vol. 14, Pages 848: Uranium and Associated Heavy Metals in Ovis aries in a Mining Impacted Area in Northwestern New Mexico International Journal of Environmental Research and Public Health doi: 10.3390/ijerph14080848 Authors: Christine Samuel-Nakamura Wendie Robbins Felicia Hodge The objective of this study was to determine uranium (U) and other heavy metal (HM) concentrations (As, Cd, Pb, Mo, and Se) in tissue samples collected from sheep (Ovis aries), the primary meat staple on the Navajo reservation in northwestern New Mexico. The study setting was a prime target of U mining, where more than 1100 unreclaimed abandoned U mines and structures remain. The forage and water sources for the sheep in this study were located within 3.2 km of abandoned U mines and structures. Tissue samples from sheep (n = 3), their local forage grasses (n = 24), soil (n = 24), and drinking water (n = 14) sources were collected. The samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry. Results: In general, HMs concentrated more in the roots of forage compared to the above ground parts. The sheep forage samples fell below the National Research Council maximum tolerable concentration (5 mg/kg). The bioaccumulation factor ratio was >1 in several forage samples, ranging from 1.12 to 16.86 for Mo, Cd, and Se. The study findings showed that the concentrations of HMs were greatest in the liver and kidneys. Of the calculated human intake, Se Reference Dietary Intake and Mo Recommended Dietary Allowance were exceeded, but the tolerable upper limits for both were not exceeded. Food intake recommendations informed by research are needed for individuals especially those that may be more sensitive to HMs. Further study with larger sample sizes is needed to explore other impacted communities across the reservation.
    Print ISSN: 1661-7827
    Digitale ISSN: 1660-4601
    Thema: Energietechnik , Medizin
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-12-14
    Beschreibung: The mechanism and evolution of fault linkage is important in the growth and development of large faults. Here we investigate the role of coseismic stress changes in shaping the hard-links between parallel normal fault segments (or faults), by comparing numerical models of the Coulomb stress change from simulated earthquakes on two en echelon fault segments to natural observations of hard-linked fault geometry. We consider three simplified linking fault geometries: 1) fault bend; 2) breached relay ramp; and 3) strike-slip transform fault. We consider scenarios where either one or both segments rupture and vary the distance between segment tips. Fault bends and breached relay ramps are favoured where segments underlap, or when the strike-perpendicular distance between overlapping segments is less than 20% of their total length, matching all 14 documented examples. Transform fault linkage geometries are preferred when overlapping segments are laterally offset at larger distances. Few transform faults exist in continental extensional settings, and our model suggests that propagating faults or fault segments may first link through fault bends or breached ramps before reaching sufficient overlap for a transform fault to develop. Our results suggest that Coulomb stresses arising from multi-segment ruptures or repeated earthquakes are consistent with natural observations of the geometry of hard-links between parallel normal fault segments.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-03-09
    Beschreibung: The presence of bare or partially-covered rock in an otherwise alluvial river implies a downstream change in transport capacity relative to supply. Field investigations of this change and what causes it are lacking. We used two sets of magnet-tagged tracer clasts to investigate bedload transport during the same sequence of floods in fully alluvial, bare rock, and partial-cover reaches of an upland stream. High-flow shear stresses in different reaches were calculated using stage loggers. Tracers seeded in the upstream alluvial channel moved more slowly than elsewhere until the frontrunners reached bare rock and sped up. Tracers seeded on bare rock moved rapidly off it and accumulated just upstream from, and later in, a partial-cover zone with many boulders. The backwater effect of the boulder-rich zone is significant in reducing tracer mobility. Tracer movement over full or partial sediment cover was size selective but dispersion over bare rock was not. Along-channel changes in tracer mobility are interpreted in terms of measured differences in shear stress and estimated differences in threshold stress.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-02-17
    Beschreibung: This paper explores the idea of information loss through data compression, as occurs in the course of any data analysis, illustrated via detailed consideration of the Binomial distribution. We examine situations where the full sequence of binomial outcomes is retained, situations where only the total number of successes is retained, and in-between situations. We show that a familiar decomposition of the Shannon entropy H can be rewritten as a decomposition into H t o t a l , H l o s t , and H c o m p , or the total, lost and compressed (remaining) components, respectively. We relate this new decomposition to Landauer’s principle, and we discuss some implications for the “information-dynamic” theory being developed in connection with our broader program to develop a measure of statistical evidence on a properly calibrated scale.
    Digitale ISSN: 1099-4300
    Thema: Chemie und Pharmazie , Physik
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...