ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-20
    Description: The Cadzow rank-reduction method can be effectively utilized in simultaneously denoising and reconstructing 5-D seismic data that depend on four spatial dimensions. The classic version of Cadzow rank-reduction method arranges the 4-D spatial data into a level-four block Hankel/Toeplitz matrix and then applies truncated singular value decomposition (TSVD) for rank reduction. When the observed data are extremely noisy, which is often the feature of real seismic data, traditional TSVD cannot be adequate for attenuating the noise and reconstructing the signals. The reconstructed data tend to contain a significant amount of residual noise using the traditional TSVD method, which can be explained by the fact that the reconstructed data space is a mixture of both signal subspace and noise subspace. In order to better decompose the block Hankel matrix into signal and noise components, we introduced a damping operator into the traditional TSVD formula, which we call the damped rank-reduction method. The damped rank-reduction method can obtain a perfect reconstruction performance even when the observed data have extremely low signal-to-noise ratio. The feasibility of the improved 5-D seismic data reconstruction method was validated via both 5-D synthetic and field data examples. We presented comprehensive analysis of the data examples and obtained valuable experience and guidelines in better utilizing the proposed method in practice. Since the proposed method is convenient to implement and can achieve immediate improvement, we suggest its wide application in the industry.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-25
    Description: We obtain high-resolution Rayleigh and Love wave phase velocity maps from ambient noise tomography using data recorded by NECESSArray in Northeast China. The resulting radial anisotropic model from the joint inversion of Rayleigh and Love wave dispersion curves reveals strong relationship between the crustal radial anisotropy and tectonic provinces, that is, strong positive anisotropy ( V sh 〉 V sv ) beneath the Songliao Basin and weak radial anisotropy beneath the Xinmeng Belt and Changbaishan Region. The Songliao Basin experienced widespread crustal extension during the late Mesozoic. We interpret the lower crustal anisotropy beneath the Songliao Basin as a result of ductile deformation during the rifting stage, which may lead to the alignment of anisotropic minerals and the observed strong radial anisotropy at present. In the northern Songliao Basin, where thick syn-rift and post-rift sediments (≥4 km) are believed to be present, we observe a broader lateral distribution of anisotropy with stronger amplitude compared with the southern basin. We suggest that the broader distribution of crustal radial anisotropy in the northern basin could be the consequence of outward lower crustal flow driven by the sedimentary loading during the post-rift stage, which is also proposed by previous numerical modeling.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...