ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (7)
  • Signal Transduction  (7)
  • American Association for the Advancement of Science (AAAS)  (7)
  • Institute of Physics
  • 2015-2019  (7)
  • 1965-1969
  • 2016  (7)
  • 1
    Publikationsdatum: 2016-01-23
    Beschreibung: The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xuan, Wei -- Band, Leah R -- Kumpf, Robert P -- Van Damme, Daniel -- Parizot, Boris -- De Rop, Gieljan -- Opdenacker, Davy -- Moller, Barbara K -- Skorzinski, Noemi -- Njo, Maria F -- De Rybel, Bert -- Audenaert, Dominique -- Nowack, Moritz K -- Vanneste, Steffen -- Beeckman, Tom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):384-7. doi: 10.1126/science.aad2776.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, PR China. ; Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK. ; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. ; Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tubingen, Germany. ; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, Netherlands. ; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. tobee@psb.vib-ugent.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26798015" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): *Apoptosis ; Arabidopsis/cytology/*growth & development/metabolism ; Indoleacetic Acids/*metabolism ; Plant Epidermis/cytology/growth & development/metabolism ; Plant Root Cap/cytology/*growth & development/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics/metabolism ; Signal Transduction ; Soil ; Water/metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-04-09
    Beschreibung: Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Xiaolei -- Ditlev, Jonathon A -- Hui, Enfu -- Xing, Wenmin -- Banjade, Sudeep -- Okrut, Julia -- King, David S -- Taunton, Jack -- Rosen, Michael K -- Vale, Ronald D -- 5-F32-DK101188/DK/NIDDK NIH HHS/ -- F32 DK101188/DK/NIDDK NIH HHS/ -- R01 GM056322/GM/NIGMS NIH HHS/ -- R01-GM56322/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):595-9. doi: 10.1126/science.aad9964. Epub 2016 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; HHMI Mass Spectrometry Laboratory and Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ron.vale@ucsf.edu michael.rosen@utsouthwestern.edu. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ron.vale@ucsf.edu michael.rosen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27056844" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Actins/*metabolism ; Adaptor Proteins, Signal Transducing/*metabolism ; Fluorescence Recovery After Photobleaching ; Humans ; Jurkat Cells ; Membrane Proteins/*metabolism ; Mitogen-Activated Protein Kinase Kinases ; Phosphorylation ; Polymerization ; Receptors, Antigen, T-Cell/*agonists ; Signal Transduction ; T-Lymphocytes/*metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2016-03-19
    Beschreibung: Systemic inflammation, which results from the massive release of proinflammatory molecules into the circulatory system, is a major risk factor for severe illness, but the precise mechanisms underlying its control are not fully understood. We observed that prostaglandin E2 (PGE2), through its receptor EP4, is down-regulated in human systemic inflammatory disease. Mice with reduced PGE2 synthesis develop systemic inflammation, associated with translocation of gut bacteria, which can be prevented by treatment with EP4 agonists. Mechanistically, we demonstrate that PGE2-EP4 signaling acts directly on type 3 innate lymphoid cells (ILCs), promoting their homeostasis and driving them to produce interleukin-22 (IL-22). Disruption of the ILC-IL-22 axis impairs PGE2-mediated inhibition of systemic inflammation. Hence, the ILC-IL-22 axis is essential in protecting against gut barrier dysfunction, enabling PGE2-EP4 signaling to impede systemic inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duffin, Rodger -- O'Connor, Richard A -- Crittenden, Siobhan -- Forster, Thorsten -- Yu, Cunjing -- Zheng, Xiaozhong -- Smyth, Danielle -- Robb, Calum T -- Rossi, Fiona -- Skouras, Christos -- Tang, Shaohui -- Richards, James -- Pellicoro, Antonella -- Weller, Richard B -- Breyer, Richard M -- Mole, Damian J -- Iredale, John P -- Anderton, Stephen M -- Narumiya, Shuh -- Maizels, Rick M -- Ghazal, Peter -- Howie, Sarah E -- Rossi, Adriano G -- Yao, Chengcan -- 106122/Wellcome Trust/United Kingdom -- BB/K091121/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- DK37097/DK/NIDDK NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1333-8. doi: 10.1126/science.aad9903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK. ; Division of Pathway Medicine, Edinburgh Infectious Diseases, The University of Edinburgh, Edinburgh EH16 4SB, UK. ; Institute for Immunology and Infection Research, The University of Edinburgh, Edinburgh EH9 3JT, UK. ; MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK. ; Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China. ; Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37212, USA. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA. ; Center for Innovation in Immunoregulative Technology and Therapeutics (AK Project), Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan. ; Division of Pathway Medicine, Edinburgh Infectious Diseases, The University of Edinburgh, Edinburgh EH16 4SB, UK. Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh EH9 3JD, UK. ; Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK. chengcan.yao@ed.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989254" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Bacterial Infections/genetics/immunology ; Dinoprostone/*immunology ; Gene Expression ; Humans ; Immunity, Innate ; Inflammation/drug therapy/*immunology/microbiology ; Interleukins/*immunology ; Intestines/*immunology/microbiology ; Lymphocytes/*immunology ; Mice ; Receptors, Prostaglandin E, EP4 Subtype/antagonists & ; inhibitors/genetics/*immunology ; Signal Transduction
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2016-01-23
    Beschreibung: Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Hui-Hsin -- Niu, Jianqin -- Munji, Roeben -- Davalos, Dimitrios -- Chang, Junlei -- Zhang, Haijing -- Tien, An-Chi -- Kuo, Calvin J -- Chan, Jonah R -- Daneman, Richard -- Fancy, Stephen P J -- 1P01 NS083513/NS/NINDS NIH HHS/ -- 1R01NS064517/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):379-84. doi: 10.1126/science.aad3839.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, University of California at San Francisco (UCSF), San Francisco, CA 94158, USA. ; Departments of Pharmacology and Neuroscience, University of California at San Diego (UCSD), San Diego, CA 92093, USA. ; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA. ; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. ; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Urology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA. Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA. Duke University School of Medicine, Durham, NC 27710, USA. ; Department of Neurology, UCSF, San Francisco, CA 94158, USA. ; Department of Pediatrics, University of California at San Francisco (UCSF), San Francisco, CA 94158, USA. Department of Neurology, UCSF, San Francisco, CA 94158, USA. Division of Neonatology, UCSF, San Francisco, CA 94158, USA. Newborn Brain Research Institute, UCSF, San Francisco, CA 94158, USA. stephen.fancy@ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26798014" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Blood Vessels/cytology/embryology ; *Cell Movement ; Cerebral Cortex/blood supply/*embryology ; Endothelium, Vascular/cytology ; Humans ; Mice ; Neural Stem Cells/cytology/*physiology ; *Neurogenesis ; Oligodendroglia/cytology/*physiology ; *Organogenesis ; Pericytes/cytology/physiology ; Receptors, CXCR4/metabolism ; Signal Transduction ; Spinal Cord/blood supply/cytology/*embryology ; Wnt Proteins/metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2016-02-26
    Beschreibung: Purine biosynthetic enzymes organize into dynamic cellular bodies called purinosomes. Little is known about the spatiotemporal control of these structures. Using super-resolution microscopy, we demonstrated that purinosomes colocalized with mitochondria, and these results were supported by isolation of purinosome enzymes with mitochondria. Moreover, the number of purinosome-containing cells responded to dysregulation of mitochondrial function and metabolism. To explore the role of intracellular signaling, we performed a kinome screen using a label-free assay and found that mechanistic target of rapamycin (mTOR) influenced purinosome assembly. mTOR inhibition reduced purinosome-mitochondria colocalization and suppressed purinosome formation stimulated by mitochondria dysregulation. Collectively, our data suggest an mTOR-mediated link between purinosomes and mitochondria, and a general means by which mTOR regulates nucleotide metabolism by spatiotemporal control over protein association.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉French, Jarrod B -- Jones, Sara A -- Deng, Huayun -- Pedley, Anthony M -- Kim, Doory -- Chan, Chung Yu -- Hu, Haibei -- Pugh, Raymond J -- Zhao, Hong -- Zhang, Youxin -- Huang, Tony Jun -- Fang, Ye -- Zhuang, Xiaowei -- Benkovic, Stephen J -- 1R33EB019785-01/EB/NIBIB NIH HHS/ -- GM024129/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):733-7. doi: 10.1126/science.aac6054.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Cell Biology, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. ; Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA. ; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA. ; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA. Department of Physics, Harvard University, Cambridge, MA 02138, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912862" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): HeLa Cells ; Humans ; Microscopy ; Mitochondria/*metabolism/ultrastructure ; Purines/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2016-02-06
    Beschreibung: The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howitt, Michael R -- Lavoie, Sydney -- Michaud, Monia -- Blum, Arthur M -- Tran, Sara V -- Weinstock, Joel V -- Gallini, Carey Ann -- Redding, Kevin -- Margolskee, Robert F -- Osborne, Lisa C -- Artis, David -- Garrett, Wendy S -- F31DK105653/DK/NIDDK NIH HHS/ -- F32DK098826/DK/NIDDK NIH HHS/ -- R01 CA154426/CA/NCI NIH HHS/ -- R01 GM099531/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1329-33. doi: 10.1126/science.aaf1648. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. ; Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA. ; Monell Chemical Senses Center, Philadelphia, PA 19104, USA. ; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA. ; Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. wgarrett@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847546" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Chemoreceptor Cells/*immunology ; Eosinophils/immunology ; Goblet Cells/immunology ; Helminthiasis/immunology/parasitology ; Helminths/immunology ; Immunity, Mucosal ; Interleukin-13/immunology ; Interleukin-17/immunology ; Intestinal Diseases, Parasitic/*immunology/parasitology ; Intestinal Mucosa/*immunology/*parasitology ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microbiota/*immunology ; Protein-Serine-Threonine Kinases/immunology ; Protozoan Infections/immunology/parasitology ; Signal Transduction ; TRPM Cation Channels/*immunology ; Taste ; Transducin/genetics/immunology ; Tritrichomonas/immunology
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2016-02-06
    Beschreibung: SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56beta, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bidinosti, Michael -- Botta, Paolo -- Kruttner, Sebastian -- Proenca, Catia C -- Stoehr, Natacha -- Bernhard, Mario -- Fruh, Isabelle -- Mueller, Matthias -- Bonenfant, Debora -- Voshol, Hans -- Carbone, Walter -- Neal, Sarah J -- McTighe, Stephanie M -- Roma, Guglielmo -- Dolmetsch, Ricardo E -- Porter, Jeffrey A -- Caroni, Pico -- Bouwmeester, Tewis -- Luthi, Andreas -- Galimberti, Ivan -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1199-203. doi: 10.1126/science.aad5487. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Friedrich Miescher Institute, Basel, Switzerland. ; Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, USA. ; Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ivan.galimberti@novartis.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847545" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Sequence ; Animals ; Autism Spectrum Disorder/*drug therapy/enzymology/genetics ; Chromosome Deletion ; Chromosome Disorders/genetics ; Chromosomes, Human, Pair 22/genetics ; Disease Models, Animal ; Down-Regulation ; Gene Knockdown Techniques ; Humans ; Insulin-Like Growth Factor I/metabolism ; Mice ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Nerve Tissue Proteins/*genetics ; Neurons/enzymology ; Phosphorylation ; Protein Phosphatase 2/metabolism ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Proteomics ; Proto-Oncogene Proteins c-akt/genetics/metabolism ; Rats ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...