ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-17
    Description: Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary organic aerosol (SOA) are presented. We report observations of significant liquid–viscous SOA particle polarization transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarization ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulfate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentrations and mixtures with respect to the CLOUD 8–9 campaigns and its potential contribution to tropical troposphere layer analysis.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-19
    Description: This paper addresses the development of flow sensors optimized for heating, ventilating, and air conditioning systems. The sensors are based on the printed circuit board technology facilitating robust, flexible (in terms of layout), and cost-effective devices. Two approaches for measuring fluid quantities like flow velocity over the whole cross section are investigated in this context. The first one relies on hot-film transduction and stands out for its simplicity, but also shows some severe limitations, which can be circumvented by the second approach based on calorimetric transduction. Supported by extensive numerical simulations, several sensor embodiments were investigated and fabricated. After experimental characterization, measurement and simulation results were compared, which turned out to be in good agreement.
    Print ISSN: 2194-8771
    Electronic ISSN: 2194-878X
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-30
    Description: The FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem-scale, a process not currently considered in regional or global scale atmospheric chemistry models. We found that FORCAsT could only reproduce the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions FORCAsT was able to successfully simulate the observed bi-directional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf-level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-19
    Description: The volcanic cloud top altitude and the atmospheric thermal structure after volcanic eruptions are studied using Global Positioning System (GPS) Radio Occultation (RO) profiles co-located with independent radiometric measurements of ash and SO2 clouds. We use the GPS RO data to detect volcanic clouds and to analyze their impact on climate in terms of temperature changes. We selected about 1300 GPS RO profiles co-located with two representative eruptions (Puyehue 2011, Nabro 2011) and found that an anomaly technique recently developed for detecting cloud tops of convective systems can also be applied to volcanic clouds. Analyzing the atmospheric thermal structure after the eruptions, we found clear cooling signatures of volcanic cloud tops in the upper troposphere for the Puyehue case. The impact of Nabro lasted for several months, suggesting that the cloud reached the stratosphere, where a significant warming occurred. The results are encouraging for future routine use of RO data for monitoring volcanic clouds.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-27
    Description: We investigate the sensitivity of two dust parameterizations of the regional climate model RegCM4 for the period 2007–2014 over the Sahara and the Mediterranean. We apply two discretization methods of the dust size distribution keeping the total mass constant: 1) the default RegCM4 4-bin approach, where the size range of each bin is calculated using an equal, logarithmic separation of the total size range of dust, using the diameter of dust particles and 2) a newly implemented 12-bin approach with each bin defined according to an isogradient method where the size ranges are dependent on the dry deposition velocity of dust particles. Increasing the number of transported dust size bins theoretically improves the representation of the physical properties of dust particles within the same size bin. Thus, more size bins minimize the error and improve the simulation of atmospheric processes. The radiative effects of dust over the area are discussed and evaluated with the CALIPSO Dust Optical Depth (DOD). This study is among the first studies evaluating the vertical profile of simulated dust with a pure dust product. Reanalysis winds from ERA-interim and the total precipitation flux from the observational gridded database CRU are used to evaluate and explain the discrepancies between model and observations. The new dust binning approach increases the dust column burden by 4 % and 3 % for fine and coarse particles respectively, which increases DOD by 10 % over the desert and the Mediterranean. Consequently, negative shortwave RF is enhanced by more than 10 % at the top of the atmosphere and by 1 % to 5 % on the surface. Positive longwave RF locally increases by more than 0.1 W m−2 in a large portion of the Sahara desert, the northern part of the Arabian peninsula and the Middle East. The 4-bin isolog method is to some extent numerically efficient, nevertheless our work highlights that the simplified representation of the 4-bin approach underestimates the dust optical depth and the radiative forcing, a fact that should be taking into account by future researches that study the same region.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-18
    Description: The aerosol first indirect effect (FIE) is typically characterized by a reduction in cloud droplet size and an increase in cloud optical thickness in the presence of high concentrations of condensation nuclei. Past studies have derived observational evidence of the FIE in specific locations and conditions, yet critical uncertainties in the validity of this conceptual model as it applies to a range of cloud types and meteorological settings remain unaddressed. We utilize five years of surface aerosol measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cloud properties to discern the FIE in springtime cloud statistics over the Southern Great Plains region of the United States. We extend this analysis to explore the role of three confounding factors: cloud phase, observational uncertainty and the role of regional meridional flow. While high aerosol days are dominated by smaller average droplet size in liquid clouds, the response of cloud optical thickness is variable and is dominantly a function of cloud water path. Ice clouds experience more variability in their response to high aerosol loading and satellite retrieval uncertainty thresholds. Finally, the direction of meridional flow does not play a large role in stratifying the cloud response to different aerosol loading. Overall, these observations show that much of the classical theory for liquid clouds is supported. Higher aerosol loadings are correlated with a reduction in effective radius and generally higher cloud optical thickness, and this relationship dominates over any driving influence from the low-level jet. However, for ice clouds we see a variable response that may be driven by aerosol composition and cold cloud microphysics. These observations provide further insight into the importance of considering deviations from the classic FIE in understanding regional variability in aerosol-cloud interactions in a continental setting.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-10-04
    Description: Sea ice represents an additional oceanic source of the climatically active gas dimethylsulfide (DMS) for the Arctic atmosphere. To what extent this source contributes to the dynamics of summertime Arctic clouds is however not known due to scarcity of field measurements. In this study, we developed a coupled sea ice-ocean ecosystem-sulfur cycle model to investigate the potential impact of bottom-ice DMS and its precursor dimethylsulfoniopropionate (DMSP) on the oceanic production and emission of DMS in the Arctic. The result of the 1-D model simulation was compared with field data collected during May and June of 2010 in Resolute Passage. Our result reproduced the accumulation of DMS and DMSP in the bottom ice during the development of an ice algal bloom. The flushing of these sulfur species took place predominantly during the earlier phase of the melt period, resulting in an increase of DMS and DMSP in the underlying water column prior to the onset of an under-ice phytoplankton bloom. Processes that dominated the budgets of bottom- and under-ice DMS and DMSP were identified through an analysis of production and removal rates of processes considered in the model. When openings in the ice were taken into account, the simulated sea-air DMS flux during the melt period was dominated by episodic spikes of up to 5.6 μmol m−2 d−1. Further model simulations were conducted to assess the effects of the incorporation of sea-ice biogeochemistry on DMS production and emissions, as well as the sensitivity of our results to changes of uncertain model parameters of the sea-ice sulfur cycle. The results highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that would be better constrained by new observations.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-04
    Description: Knowledge about mass discrimination effects in a chemical ionization mass spectrometer (CIMS) is crucial for quantifying, e.g., the recently discovered extremely low volatile organic compounds (ELVOCs) and other compounds for which no calibration standard exists so far. Here, we present a simple way of estimating mass discrimination effects of a nitrate-based chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer. Characterization of the mass discrimination is achieved by adding different perfluorinated acids to the mass spectrometer in amounts sufficient to deplete the primary ions significantly. The relative transmission efficiency can then be determined by comparing the decrease of signals from the primary ions and the increase of signals from the perfluorinated acids at higher masses. This method is in use already for PTR-MS; however, its application to a CI-APi-TOF brings additional difficulties, namely clustering and fragmentation of the measured compounds, which can be treated with statistical analysis of the measured data, leading to self-consistent results. We also compare this method to a transmission estimation obtained with a setup using an electrospray ion source, a high-resolution differential mobility analyzer and an electrometer, which estimates the transmission of the instrument without the CI source. Both methods give different transmission curves, indicating non-negligible mass discrimination effects of the CI source. The absolute transmission of the instrument without the CI source was estimated with the HR-DMA method to plateau between the m∕z range of 127 and 568 Th at around 1.5 %; however, for the CI source included, the depletion method showed a steady increase in relative transmission efficiency from the m∕z range of the primary ion (mainly at 62 Th) to around 550 Th by a factor of around 5. The main advantages of the depletion method are that the instrument is used in the same operation mode as during standard measurements and no knowledge of the absolute amount of the measured substance is necessary, which results in a simple setup.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-29
    Description: Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all differential mobility analyzers (DMAs) have an unfavorable potential gradient at the outlet (e.g., long column, Vienna type) or at the inlet (nano-radial DMA), preventing them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in Millikan–Fuchs mobility equivalent diameter, Dp (corresponding to 1.2  ×  10−4 m2 V−1 s−1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and as a booster a condensation particle counter (CPC). With this setup, we were able to measure size distributions of ions within a mobility range from 1.2  ×  10−4 to 5.8  ×  10−6 m2 V−1 s−1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD (Cosmics Leaving Outdoor Droplets) 7 measurement campaign at CERN. We achieved a higher size resolution (R  =  5.5 at Dp  =  1.47 nm) than techniques currently used in field measurements (e.g., Neutral cluster and Air Ion Spectrometer (NAIS), which has a R  ∼  2 at largest sizes, and R  ∼  1.8 at Dp  =  1.5 nm) and maintained a good total transmission efficiency (6.3 % at Dp  =  1.5 nm) at moderate inlet and sheath airflows (2.5 and 30 L min−1, respectively). In this paper, by measuring size distributions at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 µm.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-04
    Description: Since 2002 the OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) in Udine (Italy), the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Vienna (Austria), and the Agencija Republike Slovenije za Okolje (ARSO) in Ljubljana (Slovenia) are collecting, analysing, archiving and exchanging seismic data in real time. Up to now the data exchange between the seismic data centres relied on internet: this however was not an ideal condition for civil protection purposes, since internet reliability is poor. For this reason, in 2012 the Protezione Civile della Provincia Autonoma di Bolzano in Bolzano (Italy) joined OGS, ZAMG and ARSO in the Interreg IV Italia-Austria project "SeismoSAT" (Progetto SeismoSAT, 2014) aimed in connecting the seismic data centres in real time via satellite. As already presented in the past, the general technical schema of the project has been outlined, data bandwidths and monthly volumes required have been quantified, the common satellite provider has been selected and the hardware has been purchased and installed. Right before the end of its financial period, the SeismoSAT project proved to be successful guaranteeing data connection stability between the involved data centres during an internet outage.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...