ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (4)
  • PANGAEA  (1)
  • Wiley
  • 2015-2019  (5)
  • 2005-2009
  • 2000-2004
  • 2016  (5)
Collection
Years
  • 2015-2019  (5)
  • 2005-2009
  • 2000-2004
Year
  • 1
  • 2
    Publication Date: 2016-04-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Hydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during barite crystallization. The comparison of fluid inclusion formation temperatures to modelled mixing temperatures indicates that conductive cooling of the vent fluid accounts for 60–120 °C reduction in fluid temperature. Strontium zonation within individual barite crystals records fluctuations in the amount of conductive cooling within chimney walls that may result from cyclical oscillations in hydrothermal fluid flux. Barite chemistry and morphology can be used as a reliable indicator for past conditions of mineralization within both extinct seafloor hydrothermal deposits and ancient land-based volcanogenic massive sulfide deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Conflicting results have been reported for the stable Sr isotope fractionation, specifically with respect to the influence of temperature. In an experimental study we have investigated the stable Sr isotope systematics for inorganically precipitated and biogenic (coral) aragonite (natural and laboratory-cultured). Inorganic aragonite precipitation experiments were performed from natural seawater using the CO2 diffusion technique. The experiments were performed at different temperatures and different carbonate ion concentrations. 88Sr/86Sr of the inorganic aragonite precipitated in the experiments are 0.2‰ lighter than seawater, but showed no correlation to the water temperature or to CO32− concentration. Similar observations are made in different coral species (Cladocora caespitosa, Porites sp. and Acropora sp.), with identical fractionation from the bulk solution and no correlation to temperature or CO32− concentration. The lack of 88Sr/86Sr variability in corals at different environmental parameters and the similarity to the 88Sr/86Sr fractionation in inorganic aragonite may indicate a similar Sr incorporation mechanism in corals skeleton and inorganic aragonite, and therefore the previously proposed Rayleigh-based multi element model (Gaetani et al., 2011) cannot explain the process of Sr incorporation in the coral skeletal material. It is proposed that the relatively constant 88Sr/86Sr fractionation in aragonite can be used for paleo reconstruction of seawater 88Sr/86Sr composition. The seawater 88Sr/86Sr ratio reconstruction can be further used in calcite samples to reconstruct paleo precipitation rates.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ragazzola, Federica; Foster, Laura C; Jones, C J; Scott, T B; Fietzke, Jan; Kilburn, M R; Schmidt, Daniela N (2016): Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale. Scientific Reports, 6, 20572, https://doi.org/10.1038/srep20572
    Publication Date: 2024-03-15
    Description: Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 matm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Kattegat_OA; Laboratory experiment; Lithothamnion glaciale; Location; Macroalgae; Magnesium/Calcium ratio; Magnesium/Calcium ratio, standard error; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Potentiometric titration; Registration number of species; Rhodophyta; Salinity; Salinity, standard deviation; Sample ID; Single species; Species; Strontium/Calcium ratio; Strontium/Calcium ratio, standard error; Temperate; Temperature, water; Temperature, water, standard deviation; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 600 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...