ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (7)
  • 2010-2014
  • 2016  (7)
Collection
Publisher
Years
  • 2015-2019  (7)
  • 2010-2014
Year
  • 1
    Publication Date: 2016-06-27
    Description: Global surface emissions of nitrogen oxides (NOx) over a ten-year period (2005–2014) are estimated from an assimilation of multiple satellite datasets: tropospheric NO2 columns from OMI, GOME-2, and SCIAMACHY; O3 profiles from TES; CO profiles from MOPITT; and O3 and HNO3 profiles from MLS using an ensemble Kalman filter technique. Chemical concentrations of various species and emission sources of several precursors are simultaneously optimized. This is expected to improve the emission inversion because the emission estimates are influenced by biased in the modelled tropospheric chemistry, which can be partly corrected by also optimizing the concentrations. We present detailed distributions of the estimated emission distributions for all major regions, the diurnal and seasonal variability, and the development of these emissions over the ten-year period. The estimated regional total emissions show a strong positive trend over India (+29 %/decade), China (+26 %/decade), and the Middle East (+20 %/decade), and a negative trend over the United States (−38 %/decade), Southern Africa (−8.2 %/decade), and western Europe (−8.8 %/decade). The negative trends in the United States and western Europe are larger during 2005–2010 relative to 2011–2014, whereas the trend in China becomes negative after 2011. The data assimilation also suggests a large uncertainty in anthropogenic and fire-related emission factors and an important underestimation of soil NOx sources in the emission inventories. Despite the large trends observed for individual regions, the global total emission is almost constant between 2005 (47.9 Tg N yr−1) and 2014 (47.5 Tg N yr−1).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-04
    Description: Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths/year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from less than 0.4 million deaths/year in 2000 to between 1.09 and 2.36 million deaths/year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. Decreases in PM2.5 concentrations relative to 2000 are associated with avoided premature mortality in all scenarios, particularly in 2100: between −2.39 and −1.31 million deaths/year for the four RCPs due to the reductions in emissions projected in these scenarios. The global mortality burden of PM2.5 is estimated to decrease from 1.7 million deaths/year in 2000 to between 0.95 and 1.55 million deaths/year in 2100 for the four RCPs, due to the combined effect of decreases in PM2.5 concentrations and changes in population and baseline mortality rates. Trends in future air pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry-climate models due to differences in simulated pollutant concentrations, and is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-28
    Description: The recent update on the US National Ambient Air Quality Standards of the ground-level ozone (O3) can benefit from a better understanding of its source contributions in different US regions during recent years. In the Hemispheric Transport of Air Pollution experiment Phase 1 (HTAP1), various global models were used to determine the O3 source-receptor relationships among three continents in the North Hemisphere in 2001. In support of the HTAP Phase 2 (HTAP2) experiment that studies more recent years and involves higher-resolution global models and regional models' participation, we conduct a number of regional scale Sulfur Transport and dEposition Model (STEM) air quality base and sensitivity simulations over North America during May–June 2010. The STEM top and lateral chemical boundary conditions were downscaled from three global chemical transport models' (i.e., GEOS-Chem, RAQMS, and ECMWF C-IFS) base and sensitivity simulations (in which the East Asian anthropogenic emissions were reduced by 20 %). We perform analyses not only on large spatial/temporal scales relative to the HTAP1 works, but also on subcontiental- and event-scale that are more relevant to the US air quality management. The differences between STEM surface O3 sensitivities (including the 24 h mean and the US policy-relevant maximum daily 8 h average (MDA8) metric averaged throughout the study period and during a selected pollution transport event) and its corresponding boundary condition model's are often smaller than those among its boundary condition models. The STEM sensitivities are also compared with the mean sensitivities estimated by multi-global models, which are higher than the HTAP1 reported 2001 conditions, as well as the 2001–2005 conditions studied using the tagged tracer approach. This indicates the increasing impacts of the East Asian anthropogenic pollution on North America during 2001–2010. The GEOS-Chem sensitivities indicate that the East Asian anthropogenic NOx emissions matter more than the other East Asian O3 precursors to the North American O3, qualitatively consistent with previous adjoint sensitivity calculations. An additional STEM simulation was performed in which the boundary conditions were downscaled from a global RAQMS simulation without East Asian anthropogenic emissions, to assess the scalability of O3 sensitivities to the size of the emission perturbation. The scalability is spatially varying, and the full source contribution obtained by linearly scaling the North American regional mean O3 sensitivity to the 20 % reduction in the East Asian emissions may be underestimated. Satellite NO2 (KNMI OMI) and O3 (TES, JPL-IASI, OMI, MLS, and AIRS) products help detect pollution episodes, quantify or/and reduce the uncertainties in the bottom-up NOx emissions and the model transported background O3. Based on model calculations and satellite/surface observations during a selected event, we show the different influences from stratospheric O3 intrusions along with the transported East Asian pollution on O3 in the western and the eastern US. Future directions of using satellite data in air quality research are also suggested.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-10
    Description: In the Hemispheric Transport of Air Pollution Phase 2 (HTAP) exercise, a range of global atmospheric general circulation and chemical transport models performed coordinated perturbation experiments with 20 % reductions in emissions of anthropogenic aerosols, or aerosol precursors, in a number of source regions. Here, we compare the resulting changes in the atmospheric load and vertically resolved profiles of black carbon (BC), organic aerosols (OA) and sulfate (SO4) from 10 models that include treatment of aerosols. We use a set of temporally, horizontally and vertically resolved profiles of aerosol forcing efficiency (AFE) to estimate the impact of emission changes in six major source regions on global radiative forcing (RF) pertaining to the direct aerosol effect. Results show that mitigations in South and East Asia have substantial impacts on the radiative budget in all investigated receptor regions, especially for BC. In Russia and the Middle East, more than 80 % of the forcing for BC and OA is due to extra-regional emission reductions. Similarly, for North America, BC emissions control in East Asia is found to be more important than domestic mitigations, which is consistent with previous findings. Comparing fully resolved RF calculations to RF estimates based on vertically averaged AFE profiles allows us to quantify the importance of vertical resolution to RF estimates. We find that locally in the source regions, a 20 % emission reduction strengthens the radiative forcing associated with SO4 by 25 % when including the vertical dimension, as the AFE for SO4 is strongest near the surface. Conversely, the local RF from BC weakens by 37 % since BC AFE is low close to the ground. The influence of inter-continental transport on BC forcing, however, is enhanced by one third when accounting for the vertical aspect, because long-range transport leads primarily to aerosol changes at high altitudes, where the BC AFE is strong.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-08-05
    Description: Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry–climate models simulated future concentrations of ozone and PM2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths year−1), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382 000 (121 000 to 728 000) deaths year−1 in 2000 to between 1.09 and 2.36 million deaths year−1 in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between −2.39 and −1.31 million deaths year−1 for the four RCPs. The global mortality burden of PM2.5 is estimated to decrease from 1.70 (1.30 to 2.10) million deaths year−1 in 2000 to between 0.95 and 1.55 million deaths year−1 in 2100 for the four RCPs due to the combined effect of decreases in PM2.5 concentrations and changes in population and baseline mortality rates. Trends in future air-pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry–climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-01
    Description: In the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise, a range of global atmospheric general circulation and chemical transport models performed coordinated perturbation experiments with 20 % reductions in emissions of anthropogenic aerosols, or aerosol precursors, in a number of source regions. Here, we compare the resulting changes in the atmospheric load and vertically resolved profiles of black carbon (BC), organic aerosols (OA) and sulfate (SO4) from 10 models that include treatment of aerosols. We use a set of temporally, horizontally and vertically resolved profiles of aerosol forcing efficiency (AFE) to estimate the impact of emission changes in six major source regions on global radiative forcing (RF) pertaining to the direct aerosol effect, finding values between. 51.9 and 210.8 mW m−2 Tg−1 for BC, between −2.4 and −17.9 mW m−2 Tg−1 for OA and between −3.6 and −10.3 W m−2 Tg−1 for SO4. In most cases, the local influence dominates, but results show that mitigations in south and east Asia have substantial impacts on the radiative budget in all investigated receptor regions, especially for BC. In Russia and the Middle East, more than 80 % of the forcing for BC and OA is due to extra-regional emission reductions. Similarly, for North America, BC emissions control in east Asia is found to be more important than domestic mitigations, which is consistent with previous findings. Comparing fully resolved RF calculations to RF estimates based on vertically averaged AFE profiles allows us to quantify the importance of vertical resolution to RF estimates. We find that locally in the source regions, a 20 % emission reduction strengthens the radiative forcing associated with SO4 by 25 % when including the vertical dimension, as the AFE for SO4 is strongest near the surface. Conversely, the local RF from BC weakens by 37 % since BC AFE is low close to the ground. The fraction of BC direct effect forcing attributable to intercontinental transport, on the other hand, is enhanced by one-third when accounting for the vertical aspect, because long-range transport primarily leads to aerosol changes at high altitudes, where the BC AFE is strong. While the surface temperature response may vary with the altitude of aerosol change, the analysis in the present study is not extended to estimates of temperature or precipitation changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise, a range of global atmospheric general circulation and chemical transport models performed coordinated perturbation experiments with 20% reductions in emissions of anthropogenic aerosols, or aerosol precursors, in a number of source regions. Here, we compare the resulting changes in the atmospheric load and vertically resolved profiles of black carbon (BC), organic aerosols (OA) and sulfate (SO4/ from 10 models that include treatment of aerosols. We use a set of temporally, horizontally and vertically resolved profiles of aerosol forcing efficiency (AFE) to estimate the impact of emission changes in six major source regions on global radiative forcing (RF) pertaining to the direct aerosol effect, finding values between. 51.9 and 210.8mW/sq m/Tg for BC, between -2.4 and -17.9mW/sq m/Tg for OA and between -3.6 and -10.3W/sq m/Tg for SO4. In most cases, the local influence dominates, but results show that mitigations in south and east Asia have substantial impacts on the radiative budget in all investigated receptor regions, especially for BC. In Russia and the Middle East, more than 80 % of the forcing for BC and OA is due to extra-regional emission reductions. Similarly, for North America, BC emissions control in east Asia is found to be more important than domestic mitigations, which is consistent with previous findings. Comparing fully resolved RF calculations to RF estimates based on vertically averaged AFE profiles allows us to quantify the importance of vertical resolution to RF estimates. We find that locally in the source regions, a 20% emission reduction strengthens the radiative forcing associated with SO4 by 25% when including the vertical dimension, as the AFE for SO4 is strongest near the surface. Conversely, the local RF from BC weakens by 37% since BC AFE is low close to the ground. The fraction of BC direct effect forcing attributable to intercontinental transport, on the other hand, is enhanced by one-third when accounting for the vertical aspect, because long-range transport primarily leads to aerosol changes at high altitudes, where the BC AFE is strong. While the surface temperature response may vary with the altitude of aerosol change, the analysis in the present study is not extended to estimates of temperature or precipitation changes.
    Keywords: Geosciences (General); Environment Pollution
    Type: GSFC-E-DAA-TN41573 , Atmospheric Chemistry and Physics (ISSN 1680-7324); 16; 21; 13579-13599
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...