ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (53)
  • Wiley  (53)
  • 2015-2019  (53)
  • 2019  (26)
  • 2016  (27)
  • Energy, Environment Protection, Nuclear Power Engineering  (53)
Collection
  • Articles  (53)
Years
  • 2015-2019  (53)
Year
Journal
  • 1
    Publication Date: 2016-07-22
    Description: Temperature is highly variable across space and time at multiple scales, shapes landscape pattern, and dictates ecological processes. While our knowledge of ecological phenomena is vast relative to many landscape metrics, thermal patterns which shape landscape mosaics are largely unknown. To address this disconnect, we investigated the thermal landscape by measuring black bulb temperature ( T bb ) at intervals as small as 15 min across 3 yr in a mixed-grass shrub vegetation community. We found that the thermal landscape was highly heterogeneous displaying a prevalence for thermal extremes (i.e., T bb  〉 50°C) and that T bb was driven by the synergism of environmental, terrain, and vegetation factors. Specifically, variation of T bb on the landscape was best predicted by the inclusion of ambient temperature ( T air ), solar radiation ( S rad ), low woody cover, and tall woody cover as variables. Moreover, models of single vegetation parameters (i.e., bare ground, low woody, or tall woody cover) each had greater relative importance than those containing a single terrain variable (i.e., slope or aspect) based on AIC, providing evidence that vegetation is a key driver of T bb on the landscape. Within the thermally heterogeneous landscape, tall woody cover moderated T bb by 10°C more than bare ground, herbaceous, or low woody cover during peak diurnal heating (14:00), and was the only cover type that remained 〈50°C on average. Given that tall woody cover comprises only about 7% of the landscape in our study, these findings have direct conservation implications for species inhabiting shrub communities, specifically that the distribution of tall woody cover is a spatially limited but key predictor of potential thermal refugia on the landscape. Our findings also demonstrate that local interactions between vegetation and temperature can create thermal patterns that shape dynamic landscape mosaics across space and time. Furthermore, we show that structural heterogeneity can maximize thermal complexity across landscapes which can provide greater potential thermal options for organisms. However, our modeled climate projections suggest that far greater thermal extremes will be possible across increasingly larger swaths of the landscape in the future, making assessments and quantifications of thermal landscapes increasingly critical.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-09
    Description: Plant invasions substantially impact the ecosystem services provided by forests in urbanizing regions. Knowing where invasion risk is greatest helps target early detection and eradication efforts, but developing an accurate predictive model of invasive species presence and spread on the basis of habitat suitability remains a challenge due to spatial variation in propagule pressure (the number of individuals released) which is likely conflated with suitability. In addition to neighborhood propagule pressure that originates with propagules dispersing from naturalized populations within invaded habitats, we expect residential propagule pressure arising from the widespread use of exotic plants in the yards of single-family residences to be an important driver of invasions, and to notably improve the predictive accuracy of species distribution models (SDMs). To this end, we collected presence/absence data for a widespread forest invader, Ligustrum sinense (Chinese privet) , from 400 stratified random plots located along an urban gradient across the Charlotte, North Carolina metropolitan area. We assessed the relative contribution of residential propagule pressure and neighborhood propagule pressure to improving the predictive performance of a probit SDM for Chinese privet that only contains environmental predictors. Our results indicate that, although the environment-only model predicted the highest geographic area to be at risk of invasion by privet, it also had the highest rate of failure to accurately predict observed privet occurrences as indicated by the omission (incorrectly predicted absence) and commission (incorrectly predicted presence) error rates. Accounting for residential propagule pressure substantially improved model performance by reducing the omission error by nearly 50%, thereby improving upon the ability of the model to predict privet invasion in suboptimal habitat. Given that this increase in detection was accompanied by a decrease in the geographic area predicted at risk, we conclude that SDMs for invasive exotic shrubs and potentially for other synanthropic generalist plants may be highly inefficient when residential propagule pressure is not accounted for. Accounting for residential propagule pressure in models of invasive plants results in a more focused and accurate prediction of the area at risk, thus enabling decision makers to feasibly prioritize regional scale monitoring and control efforts.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-03
    Description: Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for three years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat x CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long term declines in the amount of carbon stored in agricultural soils. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-23
    Description: We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Over the last 120 years, the dry season in the southeastern United States has lengthened by as much as 156 days (130%), with less total precipitation. Less rainfall over a longer dry season, with no apparent change in seasonal thunderstorm patterns, likely increases both the potential for lightning‐ignited wildfires and fire severity. Global climate change could be affecting fire regimes by altering the synchrony of climatic seasonal parameters. Abstract Trends in average annual or seasonal precipitation are insufficient for detecting changes in the climatic fire season, especially in regions where the fire season is defined by wet–dry seasonal cycles and lightning activity. Using an extensive dataset (1897–2017) in the Coastal Plain of the southeastern United States, we examined changes in annual dry season length, total precipitation, and (since 1945) the seasonal distribution of thunder‐days as a correlate of lightning activity. We found that across the entire region, the dry season has lengthened by as much as 156 days (130% over 120 years), both starting earlier and ending later with less total precipitation. Less rainfall over a longer dry season, with no change in seasonal thunderstorm patterns, likely increases both the potential for lightning‐ignited wildfires and fire severity. Global climate change could be having a hitherto undetected influence on fire regimes by altering the synchrony of climatic seasonal parameters.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Over the last decades, a number of new environmental policies have been designed to improve waste management. Among them, extended producer responsibility (EPR) has introduced a mechanism to shift the environmental and financial burden of end‐of‐life products from public management to producers. Recently, EPR has been adopted by a growing number of developing countries, but this policy often struggles in being effectively implemented in such contexts, missing the opportunity of using waste management as a sustainability driver. By discussing the EPR for end‐of‐life tires (ELTs) in Ecuador, this paper proposes a different approach in designing and implementing EPR schemes in developing countries: it recommends consideration of social sustainability, rather than merely copying foreign management frameworks. To address this point, two case studies on socially directed ELT applications were designed and carried out. The case studies aimed at improving resilience of vulnerable populations to natural disasters by increasing the resistance of housing and settlements against catastrophic events using civil engineering applications. The analysis of the case studies’ outcomes brings to light possible policy adjustments, in which social sustainability goals are taken into account within the national EPR scheme. The Ecuadorian case also highlights the benefit of employing an adaptive governance approach when dealing with challenging urban management topics, such as informality (a widespread phenomenon in developing countries) and resilience.
    Print ISSN: 1088-1980
    Electronic ISSN: 1530-9290
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Quantifying drought at different temporal scales by varying the time length (i.e., grain) and timing (i.e., window) describes different hydrologic attributes which may uniquely influence animal food supplies, vegetation greenness/structure, and other factors affecting populations. For North American Great Plains breeding birds, drought had negative, but species and temporal scale‐dependent effects, supporting a larger pattern of multiple and nuanced wildlife responses to unfavorable weather. Considering drought at different temporal scales may better reveal mechanisms behind drought impacts on birds and other organisms, and improve understanding of the effects of anthropogenic climate change on species and the landscapes they inhabit. Abstract Global climate change is increasing the frequency and intensity of weather extremes, including severe droughts in many regions. Drought can impact organisms by inhibiting reproduction, reducing survival and abundance, and forcing range shifts. For birds, considering temporal scale by averaging drought‐related variables over different time lengths (i.e., temporal grains) captures different hydrologic attributes which may uniquely influence food supplies, vegetation greenness/structure, and other factors affecting populations. However, studies examining drought impacts on birds often assess a single temporal grain without considering that different species have different life histories that likely determine the temporal grain of their drought response. Furthermore, while drought is known to influence bird abundance and drive between‐year range shifts, less understood is whether it causes within‐range changes in species distributions. Our objectives were to (a) determine which temporal grain of drought (if any) is most related to bird presence/absence and whether this response is species specific; and (b) assess whether drought alters bird distributions by quantifying probability of local colonization and extinction as a function of drought intensity. We used North American Breeding Bird Survey data collected over 16 years, generalized linear mixed models, and dynamic occupancy models to meet these objectives. Different bird species responded to drought at different temporal grains, with most showing the strongest signal at annual or near‐annual grains. For all drought‐responsive species, increased drought intensity at any temporal grain always correlated with decreased occupancy. Additionally, colonization/extinction analyses indicated that one species, the dickcissel (Spiza americana), is more likely to colonize novel areas within the southern/core portion of its range during drought. Considering drought at different temporal grains, along with hydrologic attributes captured by each grain, may better reveal mechanisms behind drought impacts on birds and other organisms, and therefore improve understanding of how global climate change impacts species and the landscapes they inhabit.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Arabica coffee (Coffea arabica) is a key crop in many tropical countries and globally provides an export value of over US$13 billion per year. Wild Arabica coffee is of fundamental importance for the global coffee sector and of direct importance within Ethiopia, as a source of harvestable income and planting stock. In this paper we show that under climate change alone, population numbers could reduce by 50% or more (with a few models showing over 80%) by 2088. When applying the International Union for Conservation of Nature’s Red list of Threatened Species (IUCN Red List) criteria, even with a very conservative generation length of 21 years, wild Arabica coffee is assessed as Threatened with extinction (placed in the Endangered category) under a broad range of climate change projections, if no interventions are made. Importantly, if we do not include climate change in our assessment, Arabica coffee is assessed as Least Concern (not threatened) when applying the IUCN Red List criteria. Abstract Arabica coffee (Coffea arabica) is a key crop in many tropical countries and globally provides an export value of over US$13 billion per year. Wild Arabica coffee is of fundamental importance for the global coffee sector and of direct importance within Ethiopia, as a source of harvestable income and planting stock. Published studies show that climate change is projected to have a substantial negative influence on the current suitable growing areas for indigenous Arabica in Ethiopia and South Sudan. Here we use all available future projections for the species based on multiple general circulation models (GCMs), emission scenarios, and migration scenarios, to predict changes in Extent of Occurrence (EOO), Area of Occupancy (AOO), and population numbers for wild Arabica coffee. Under climate change our results show that population numbers could reduce by 50% or more (with a few models showing over 80%) by 2088. EOO and AOO are projected to decline by around 30% in many cases. Furthermore, present‐day models compared to the near future (2038), show a reduction for EOO of over 40% (with a few cases over 50%), although EOO should be treated with caution due to its sensitivity to outlying occurrences. When applying these metrics to extinction risk, we show that the determination of generation length is critical. When applying the International Union for Conservation of Nature's Red list of Threatened Species (IUCN Red List) criteria, even with a very conservative generation length of 21 years, wild Arabica coffee is assessed as Threatened with extinction (placed in the Endangered category) under a broad range of climate change projections, if no interventions are made. Importantly, if we do not include climate change in our assessment, Arabica coffee is assessed as Least Concern (not threatened) when applying the IUCN Red List criteria.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-18
    Description: Contact rates vary widely among individuals in socially structured wildlife populations. Understanding the interplay of factors responsible for this variation is essential for planning effective disease management. Feral swine ( Sus scrofa ) are a socially structured species which pose an increasing threat to livestock and human health, and little is known about contact structure. We analyzed 11 GPS data sets from across the United States to understand the interplay of ecological and demographic factors on variation in co-location rates, a proxy for contact rates. Between-sounder contact rates strongly depended on the distance among home ranges (less contact among sounders separated by 〉2 km; negligible between sounders separated by 〉6 km), but other factors causing high clustering between groups of sounders also seemed apparent. Our results provide spatial parameters for targeted management actions, identify data gaps that could lead to improved management and provide insight on experimental design for quantitating contact rates and structure.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-09-17
    Description: Two fundamental issues in ecology are understanding what influences the distribution and abundance of organisms through space and time. While it is well established that broad scale patterns of abiotic and biotic conditions affect organisms’ distributions and population fluctuations, discrete events may be important drivers of both space use, survival, and persistence. These discrete extreme climatic events can constrain populations and space use at fine scales beyond that which is typically measured in ecological studies. Recently a growing body of literature has identified thermal stress as a potential mechanism in determining space use and survival. We sought to determine how ambient temperature at fine temporal scales affected survival and space use for a ground-nesting quail species ( Colinus virginianus ; northern bobwhite). We modeled space use across an ambient temperature gradient (ranging from -20 °C to 38 °C) through a Maxent algorithm. We also used Andersen-Gill proportional hazard models to assess the influence of ambient temperature-related variables on survival through time. Estimated available useable space ranged from 18.6% to 57.1% of the landscape depending on ambient temperature. The lowest and highest ambient temperature categories (〈-15 °C and 〉35 °C, respectively) were associated with the least amount of estimated useable space (18.6% and 24.6% respectively). Range overlap analysis indicated dissimilarity in areas where Colinus virginianus were restricted during times of thermal extremes (range overlap = 0.38). This suggests that habitat under a given condition is not necessarily habitat under alternative conditions. Further, we found survival was most influenced by weekly minimum ambient temperatures. Our results demonstrate that ecological constraints can occur along a thermal gradient and that understanding the effects of these discrete events and how they change over time may be more important to conservation of organisms than are average and broad scale conditions as typically measured in ecological studies. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...