ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (491)
  • 2015-2019  (491)
  • 2019  (118)
  • 2018  (184)
  • 2016  (189)
Collection
Language
Years
  • 2015-2019  (491)
Year
  • 2019  (118)
  • 2018  (184)
  • 2016  (189)
  • 2017  (160)
  • 2015  (97)
  • 1
    Publication Date: 2019-07-13
    Description: Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASAs Earth observing fleet. Spanning 15+ years and running through as recently as a few hours ago, GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development. data visualization, web services, open access
    Keywords: Mathematical and Computer Sciences (General)
    Type: GSFC-E-DAA-TN37286 , American Geophyical Union (AGU) Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2300 keV band and the Kashima NICT radio telescope in the 1.41.7 GHz band with a net exposure of about 2 ks on 2016 March 25, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1000 and 100 GRPs were simultaneously observed at the main pulse and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main pulse or inter-pulse phase. All variations are within the 2 fluctuations of the X-ray fluxes at the pulse peaks, and the 3 upper limits of variations of main pulse or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2300 keV band. The values for main pulse or inter-pulse GRPs become 25% or 110%, respectively, when the phase width is restricted to the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.510 keV and 70300 keV bands are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of the main pulse and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) 10(exp 11) erg cm(exp 2), respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere. Although the number of photon-emitting particles should temporarily increase to account for the brightening of the radio emission, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a 〉0.02% brightening of the pulse-peak flux under such conditions.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN64694 , Publications of Astronomical Society of Japan (ISSN 0004-6264) (e-ISSN 2053-051X); 70; 2; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Astrobiology is the science that seeks to understand the story of life in our universe. Astrobiology includes investigation of the conditions that are necessary for life to emerge and flourish, the origin of life, the ways that life has evolved and adapted to the wide range of environmental conditions here on Earth, the search for life beyond Earth, the habitability of extraterrestrial environments, and consideration of the future of life here on Earth and elsewhere. It therefore requires knowledge of physics, chemistry, biology, and many more specialized scientific areas including astronomy, geology, planetary science, microbiology, atmospheric science, and oceanography. However, astrobiology is more than just a collection of different disciplines. In seeking to understand the full story of life in the Universe in a holistic way, astrobiology asks questions that transcend all these individual scientific subjects. Astrobiological research potentially has much broader consequences than simply scientific discovery, as it includes questions that have been of great interest to human beings for millennia (e.g., are we alone?) and raises issues that could affect the way the human race views and conducts itself as a species (e.g., what are our ethical responsibilities to any life discovered beyond Earth?).
    Keywords: Exobiology
    Type: GSFC-E-DAA-TN40743 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 16; 8; 561-653
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Hydrological change in peatlands due to anthropogenic disturbance and global warming can release enormous amounts of greenhouse gas emissions. Passive microwave satellite observations are an opportunity to globally monitor these changes. Abundant static and dynamic open water surfaces in peatlands strongly affect observed brightness temperatures (Tb). Here, we account for these contributions in radiative transfer modeling using NASA's Goddard Earth Observing System Model version 5 (GEOS-5) static open water mask and, for the dynamic open water fraction, the simulated inundated area using a version of the GEOS-5 Catchment land surface model that has been modified for peatland areas (PEAT-CLSM). Modeled Tb is compared against two years of SMAP L-band Tb. Preliminary results indicate: (i) a bias reduction when including the static open water fraction in a simple RTM mixing model, and ii) significantly improved correlation between modeled and observed Tb when using land surface output from PEAT-CLSM instead of the operational CLSM.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN59596 , International Geoscience and Remote Sensing Symposium (IGARSS); Jul 22, 2018 - Jul 27, 2018; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-23
    Description: CMB-S4 is envisioned to be the ultimate ground-based cosmic microwave background experiment, crossing critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. The CMB-S4 science case is spectacular: the search for primordial gravitational waves as predicted from inflation and the imprint of relic particles including neutrinos, unique insights into dark energy and tests of gravity on large scales, elucidating the role of baryonic feedback on galaxy formation and evolution, opening up a window on the transient Universe at millimeter wavelengths, and even the exploration of the outer Solar System. The CMB-S4 sensitivity to primordial gravitational waves will probe physics at the highest energy scales and cross a major theoretically motivated threshold in constraints on inflation. The CMB-S4 search for new light relic particles will shed light on the early Universe 10,000 times farther back than current experiments can reach. Finally, the CMB-S4 Legacy Survey covering 70% of the sky with unprecedented sensitivity and angular resolution from centimeter- to millimeter-wave observing bands will have a profound and lasting impact on Astronomy and Astrophysics and provide a powerful complement to surveys at other wavelengths, such as LSST and WFIRST, and others yet to be imagined. We emphasize that these critical thresholds cannot be reached without the level of community and agency investment and commitment required by CMB-S4. In particular, the CMB-S4 science goals are out of the reach of any projected precursor experiment by a significant margin.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74204 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-23
    Description: The LiteBIRD mission will map polarized fluctuations in the cosmic microwave background (CMB) to search for the signature of gravitational waves from inflation, potentially opening a window on the Universe a fraction of a second after the Big Bang. CMB measurements from space give access to the largest angular scales and the full frequency range to constrain Galactic foregrounds, and LiteBIRD has been designed to take best advantage of the unique window of space. LiteBIRD will have a powerful ability to separate Galactic foreground emission from the CMB due to its 15 frequency bands spaced between 40 and 402 GHz and sensitive 100-mK bolometers. LiteBIRD will provide stringent control of systematic errors due to the benign thermal environment at the second Lagrange point, L2, 20-K rapidly rotating half-wave plates on each telescope, and the ability to crosscheck its results by measuring both the reionization and recombination peaks in the B-mode power spectrum. LiteBIRD would be the next step in the series of CMB space missions, COBE, WMAP, and Planck, each of which has given landmark scientific discoveries.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74209 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 286
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, is greater than 8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44111 , SPIE Astronomical Telescopes + Instrumentation; Jun 26, 2016 - Jul 01, 2016; Edinburgh, Scotland; United Kingdom|Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; 9905; 99051R
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r(exp 2)= 0.54, RMSE= 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy(0.52 less than or equal to r(exp 2) less than or equal to 0.61; p less than 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (sigma(sup 0)) from SeaWinds/QuikSCAT presented an r(exp 2) of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN41833 , Internatational Journal of Applied Earth Observation and Geoinformation (ISSN 0303-2434); 52; 580-590
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of approx. 0.9 m(exp. 2) and 0.6 m(exp. 2) at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering less than 180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of approx. 3.4 m(exp. 2), between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) - a set of 2 X-ray telescope, for a total effective area of 250 cm(exp. 2) at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43898 , SPIE Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray Conference 2016; Jun 26, 2016; Edinburgh; United Kingdom|Proceedings of SPIE (ISSN 0277-786X) (e-ISSN 1996-756X); 9905; 99051Q
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Synthetic Aperture Radar (SAR) data have proven to be a very useful source of information for the calibration of flood inundation models. Previous studies have focused on assigning uncertainties to SAR images in order to improve flood forecast systems (e.g. Giustarini et al. (2015) and Stephens et al. (2012)). This paper investigates whether the timing of a SAR acquisition of a flood has an important impact on the calibration of a flood inundation model. As no suitable time series of SAR data exists, we generate a sequence of consistent SAR images through the use of a synthetic framework. This framework uses two available ERS-2 SAR images of the study area, one taken during the flood event of interest, the second taken during a dry reference period. The obtained synthetic observations at different points in time during the flood event are used to calibrate the flood inundation model. The results of this study indicate that the uncertainty of the roughness parameters is lower when the model is calibrated with an image taken before rather than during or after the flood peak. The results also show that the error on the modeled extent is much lower when the model is calibrated with a pre-flood peak image than when calibrated with a near-flood peak or a post-flood peak image. It is concluded that the timing of the SAR image acquisition of the flood has a clear impact on the model calibration and consequently on the precision of the predicted flood extent.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN38723 , Advances in Water Resources (ISSN 0309-1708); 100; 126-138
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...