ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-03
    Description: Natural killer (NK) cells are components of the innate immunity and play an important role in cancer surveillance through their cytolytic and immunomodulatory capabilities. Infusion of NK cells is a promising tool for cell therapy of hematologic malignancies and solid tumors. However, the potent cytotoxicity of NK cells might be hampered by tumor immune escape mechanisms and intrinsic resistance. We and others previously demonstrated intrinsic resistance of leukemia cells to NK cell lysis can be overcome by the transduction of artificial antigen receptor into NK cells. The genetic engineering of primary NK cells with chimeric antigen receptor improved cytotoxic activity and cytokine production, and this enhanced function was target-specific. Thus, a novel method to enhance NK cell activity against a wide range of tumors is also required. Several cytokines are associated with enhanced cytotoxicity, in vivo survival, and proliferation of NK cells. In particular, interleukin (IL)-21, which shares the common cytokine-receptor gamma chain with IL-2, was reported to enhance the cytotoxicity of human NK cells. In the present study, we investigated whether the enforced expression of human IL-21 in primary human NK cells enhanced their cytotoxicity against leukemic cells and allowed prolonged survival. We collected peripheral blood samples from healthy adult donors, and mononuclear cells were isolated by density gradient centrifugation. Primary NK cells were expanded by stimulation with K562-mbIL15-41BBL cell line following standard procedures. After 7 days of expansion, residual T cells were removed with magnetic beads and NK cells were transduced with a retroviral vector containing human IL-21 cDNA and GFP. Fourteen days after transduction, more than 95% of cells were CD56+CD3- NK cells. Median GFP expression in the CD56+CD3- cells was 84.2% (74.5%-97.1%, n=6). We confirmed that NK cells transduced with human IL-21 cDNA (NK-IL21) had intracellular expression of IL-21 as assessed by flow cytometry, while NK cells transduced with a vector containing GFP only (NK-mock) did not. 4-hour cytotoxicity assays revealed significantly enhanced cytotoxicity exerted by NK-IL21 (Fig. 1). Cytotoxic activity of NK-IL21 against K562 cells and Jurkat cells was significantly higher than that of NK-mock. We found that the intracellular expression levels of both perforin and granzyme B were higher in NK-IL21 cells than in NK-mock cells, in accordance with their higher cytotoxicity against target cells. However, NK-IL21 did not show increased expression of the apoptosis-inducing molecule TRAIL, NK cell activating receptor NKG2D, or natural cytotoxicity receptors p30, p44, or p46. The success of NK cell infusions might rely on the in vivo persistence of NK cells. We therefore tested whether the enforced expression of IL-21 in NK cells enhanced their proliferation and survival, and found that IL-21 expression in NK cells did not prevent apoptosis induced by IL-2 withdrawal and therefore did not favorably alter cell proliferation without IL-2. In contrast to the favorable results obtained by short-time cytotoxicity assays, NK-IL21 did not exert effective tumor control in long-term coculture experiments. The residual leukemic cell burden in NK-IL21 cocultures was not decreased and did not differ from that in NK-mock coculture experiments where cocultures were extended to 7 days without IL-2. However, by adding IL-2 (100 U/ml) to the culture, we demonstrated a dramatic suppression of residual leukemia burden exerted by NK-IL21. As shown in Figure 2, the number of residual K562 cells in the NK-IL21 cocultures was much lower than in the NK-mock cocultures (1.9% ± 0.4% vs 61.5% ± 3.8% of control culture without NK cells at a 1:1 E:T ratio, p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-02
    Description: BACKGROUND: The trial JACLS ALL-02 for treatment of childhood acute lymphoblastic leukemia (ALL) was designed to reduce acute and long-term toxicity in selected patient groups with favorable prognosis and to improve outcome in unfavorable-risk groups by treatment intensification. These aims were pursued through a refined stratification strategy using white blood cell count, age, immunophenotype, unfavorable genetic aberrations, and treatment response providing an excellent discrimination of risk groups. PATIENTS AND METHODS: Between April 2002 and March 2008, 1252 children with newly diagnosed de novo ALL with 1-18 years of age were enrolled to JACLS ALL-02 trial. Ph+ALL, mature B-ALL, and NK-leukemia were excluded. Patients with BCP-ALL were stratified into 3 groups: standard-risk (SR), high-risk (HR), extremely high-risk (ER), based on initial prednisolone (PSL) response and the modified National Cancer Institute(NCI) workshop criteria. Prednisolone poor response (PPR) was determined after 7 days of monotherapy with prednisone and one intrathecal dose of methotrexate. PSL good responders (PGR; 〈 1,000 blasts/microL) were divided into SR and HR according to the modified NCI workshop criteria by WBC 10K and age 10, and received conventional therapy. BCP-ALL with PPR (≥ 1,000 blasts/microL) or t(4;11), and acute mixed lineage leukemia/ acute unclassified leukemia were assigned to ER and received intensified post-induction therapy . Patients with T-ALL were treated by a specific protocol that was different from the protocol used for BCP-ALL. Bone marrow response was also evaluated in aspiration smears on day 15 and 33 of induction treatment, and those who had slow early bone marrow response, defined as an M3 marrow on day 15 or M2/3 marrow on day33, shifted to the higher risk and received augmented post-induction therapy. Cranial irradiation was restricted to patients with initial central nerve system involvement or T-ALL with high WBC (≥10K) at diagnosis. Alternatively, protracted TIT was given during induction, intensification and maintenance depending on the risk group (12 doses in SR/T and 15 in HR/ER). Slow early responders who had an M3 marrow on day 15 in ER/T or M2/3 marrow on day33 in any risk, underwent to stem cell transplantation (SCT). PPRs without slow early bone marrow response underwent to SCT only if a matched sibling donor was available. The probability of event-free survival (EFS) and overall survival were constructed using the Kaplan-Meier method. Events in the analysis of EFS included induction failure, death, relapse and secondary malignant neoplasm. All statistical analyses were done according to intent-to treat methods. RESULTS: Estimated 4-year EFS and OS for all 1252 patients was 83.7% (SE=1.1) and 90.3% (SE=0.89), slightly better in EFS than the former study (ALL-97; 79.3%, SE=1.7, p=0.054). The SR group (N=457, 37%) achieved excellent 4-year EFS of 90.4% (95%CI: 87.2, 92.7) and 4-year OS 97.3% (95.3, 98.5); in SR without slow early bone marrow response, patients with hyperdiploid and triple trisomy showed excellent 4-year EFS/OS of 100%. In the HR group (N=542, 43%), the estimated 4-year EFS and 4-year OS were 84.9% (81.5, 87.7) and 89.3% (86.3, 91.6), respectively; older age (≥ 6 years) was predictive for inferior OS (hazard ratio=1.14, p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-03
    Description: Introduction Clinical outcome of relapsed pediatric B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) remains poor, although survival rate for children with BCP-ALL has greatly increased over time and is now reached 90%. To clarify the molecular pathogenesis of relapsed ALL may provide novel prognostic markers and therapeutic targets. Some genome-wide analyses for specific patients group with poor prognosis, such as early-relapsed patients and Ph- or BCR-ABL-like patients, were reported. They described important insights to understand genetic background of poor prognosis. However, the majority of relapsed cases did not have any poor prognostic marker, and the molecular mechanisms of relapse in these cases still remained unclear. Therefore we performed whole exome sequencing (WES) to describe clonal evolution in 21 relapsed pediatric BCP-ALL patients. Our cohort included various cases whose time to relapse from diagnosis were between 6 months to over 10 years. We also analyzed the clonality of leukemia cells using immunoglobulin (Ig) and T-cell receptor (TCR) rearrangements. Patients and Methods Genomic DNA was isolated from 21 cases whose median time to relapse was 33 months. Somatic mutations including SNVs (single nucleotide variants), insertions / deletions and CNVs (copy number variants) were detected by WES using Agilent SureSelect and illumine HiSeq systems. To evaluate accurate VAF (valiant allele frequency), targeted deep sequencing was performed in candidate somatic mutations. The clonality analysis of leukemia cells was performed by standard PCR methods using Ig and TCR rearrangements. Results WES was performed in samples obtained at diagnosis, remission and relapse from 21 pediatric BCP-ALL patients. Tumor specific mutations had been identified by WES. Three of 21 were hypermutated with over 150 somatic mutations at relapse. Mutation of DNA mismatch repair gene, MSH3, was detected in 2 of them. Except for these hypermutated cases, the median number of somatic mutations detected at relapsed phase was 22 (range 8 to 53), which was higher than that at diagnosis (median 16, range 6 to 31). Sixteen recurrently mutated genes were identified in 21 cases by WES. Some known leukemia associated genes were detected, including KRAS and WHSC1 observed only at diagnosis and IKZF1 and CREBBP observed at relapse. Then we compared VAFs of these mutations between at diagnosis and relapse to solve the clonal architectures over time. Three patterns of clonal evolution were estimated from VAFs using targeted deep sequencing; (i) In 7 cases, all mutations described at diagnosis were shared at relapse, suggesting that relapse clone derived from predominant clone at diagnosis with additional mutations in these cases. (ii) In other 13 cases, most of mutations in predominant clone at diagnosis were not detected at relapse except for some shared mutations at diagnosis and relapse, indicating that relapsed clone occurred from founder clone existing as subclone at diagnosis. (iii) In one very late-relapsed case, there were no shared mutations at diagnosis and relapse. According to clonality analysis of Ig and TCR, none of rearrangements identified at diagnosis were conserved at relapse in this case. On the other hand, most rearrangement at diagnosis were conserved at relapse in other 20 cases except one patient who relapsed in 10 years after diagnosis. Relapse from predominant clone at diagnosis were observed in only one out of 8 late-relapsed cases (〉 36 months), whereas a half of the early-relapsed showed this clonal evolution pattern. The number of shared mutations between diagnosis and relapse was very limited in very late-relapsed cases over 10 years. Discussion Our study suggests that the clonal evolution pattern differs according to the time to relapse. In a half of early-relapsed cases, relapsed clone derived from major clone at diagnosis with additional mutations, and clonal selection of resistant clones occurred during treatment. Meanwhile, in late-relapsed cases, relapse was frequently associated with clonal evolution from minor subclone with some conserved mutations and same Ig/TCR rearrangements. The founder clone should be remained dormant for a long period until additional mutations lead to relapse. Towards a better understanding of clonal evolution in ALL, our study will shed light on the early prediction of relapse risk and new treatment strategies for relapsed ALL. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-03
    Description: Objective: The Myc proteins are transcription factors with essential roles in cell growth and proliferation through their ability to regulate gene expression. MYC binding protein 2(MYCBP2) is probable E3 ubiquitin-protein ligase and its function in leukemia is undetermined. IKZF1 encodes a kruppel-like zinc finger protein Ikaros that is essential for normal hematopoiesis and acts as a tumor suppressor in acute lymphoblastic leukemia(ALL). IKZF1 deletion is associated with the development of ALL and poor clinical outcome. This study aimed to explore the expression of c-MYC and MYCBP2 and their correlation with clinical features in adult ALL, as well as the mechanism by which Ikaros directly regulates c-MYC/MYCBP2 expression in ALL. Methods: Quantitative PCR (qPCR) was performed to explore the expression of c-MYC and MYCBP2 in 151 newly diagnosed adult patients with ALL. The correlations of c-MYC/MYCBP2 expression with clinical parameters and survival status were analyzed. In addition, luciferase assay, quantitative Chromatin Immunoprecipitation (qChIP) and Ikaros shRNA knockdown were performed to further explore the mechanism underlying regulation of c-MYC/MYCBP2 expression. Results: Expression of c-MYC is significantly higher and MYCBP2 is significantly lower in both B-ALL and T-ALL patients compared with that in normal controls. C-MYC expression is also negatively co-related with the MYCBP2 in ALL cohorts. The patients with c-MYC high and MYCBP2 low expression (c-MYChigh +MYCBP2low) showed higher median white blood cell counts (WBC) (101.5×109/L vs 29.4×109/L, P =0.007), incidence of splenomegaly and liver infiltration (75.0% vs 33.3%, P =0.004;75.0% vs19.4%, P =0.000), percentage of CD34(+) and CD33(+) cells (90.0% vs 61.3%, P =0.025; 80.0% vs 25.8%, P =0.000) and a lower percentage of complete remission (CR) rate (60.0% vs 92.0%,P =0.027) compared with that of patients with c-MYC low and MYCBP2 high expression (c-MYClow +MYCBP2high). Notably, our Ikaros ChIP-seq data showed strong Ikaros binding peaks in the promoter region of both c-MYC and MYCBP2. The qChIP assay showed that Ikaros significantly binds to c-MYC and MYCBP2 promoter regions in both Nalm6 B-ALL and Molt4 T-ALL cells. Moreover, expression of Ikaros suppressed c-MYC but increased MYCBP2 expression in both Nalm6 and CEM T-ALL cells. Conversely, Ikaros knockdown induced the increase of c-MYC but decrease of MYCBP2 in Nalm6 and CEM cells. Ikaros activator,Ck2 inhibitor TBB suppress c-MYC and increase MYCBP2 expression in a dose-dependent manner in Nalm6 and CEM cells. Ikaros knockdown with shRNA could block the TBB-induced suppression of c-MYC and increase of MYCBP2 expression. These data indicated that both c-MYC and MYCBP2 are direct Ikaros targets in ALL and Ikaros regulates their expression. Importantly, we also observed Ikaros binding to c-MYC and MYCBP2 promoters in primary B-All and T-ALL. The expression of c-MYC significantly increased and MYCBP2 decreased in patients with Ikaros deletion compared to that of Ikaros wild type. These data indicated Ikaros regulatory effect on c-MYC and MYCBP2 in ALL patients and Ikaros deletion is one of the reasons for expression change of c-MYC and MYCBP2 in the patients. Conclusion: We observed the expression of c-MYC significantly increased and MYCBP2 decreased in adult ALL patients. C-MYC high and MYCBP2 low expression is correlated with high-risk leukemia. Ikaros dysfunction is one of the reasons underlying c-MYC high and MYCBP2 low expression in the patients. Our data revealed the oncogenic effect of Ikaros/MYCBP2/c-MYC on oncogenesis in adult ALL, also suggested CK2 inhibitor exert its anti-leukemia effect through Ikaros-mediated regulation on c-MYC and MYCBP2 expression in leukemia. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-02
    Description: Introduction B-progenitor acute lymphoblastic leukemia (B-ALLs) accounts for 85% of pediatric ALL and categorized into several molecular subgroups according to their ploidy and recurrent translocations, such as ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, and MLL-rearrangements. In addition, recent genetic studies using high-throughput sequencing have disclosed landscapes of gene alterations in each subgroup, however, their clinical relevance have not fully been investigated in a large cohort of B-ALL patients who are uniformly treated and enrolled in an unbiased manner. Methods We enrolled a total of 515 pediatric B-ALL patients, who had been uniformly treated according to the Japan Association of Childhood Leukemia Study (JACLS) ALL-02 protocol between 2002 and 2008. These patients were categorized into three risk groups, including standard-, high-, and extremely high-risk. Infantile ALL as well as BCR-ABL1-positive and Down syndrome-associated cases were excluded. A total of 158 known or putative driver genes in pediatric ALL were analyzed for somatic mutations by targeted-capture sequencing. IgH rearrangements were captured using 662 baits tiling the entire IgH enhancer locus. Finally, an additional 1205 baits was also designed to enable sequencing-based genome-wide copy number detection. Results The median age at diagnosis and observation period were 5.2 (1-18.5) and 4.2 (1.8-9) years, respectively. Sixty-six of the 515 patients (13%) had relapsed diseases and 47 patients (9%) had been died. Real-time RT-PCR and conventional cytogenetic analyses revealed subgroup-defining genetic lesions in 368/515 (71%) patients: 117 (23%) cases with ETV6-RUNX1, 48 (9%) with TCF3-PBX1, 13 (3%) with MLL rearrangements, together with those with hyper- (169 [33%]), and hypo- (6 [1%]) diploid. Remaining 162 patients (31%) had none of these abnormalities. The mean depth of the targeted sequencing was 569× across the entire cohort. In total, 823 driver mutations (median 1 per patient, range 0-7) and 954 focal deletions (median 2 per patient, range 0-13) were detected in 483 patients (92%). Among these, most frequently detected were mutations/deletions in CDKN2A (24%), ETV6 (21%), NRAS (18%), KRAS (18%), and PAX5 (15%). IgH-rearrangements were detected in 51 patients, including IGH-DUX4 (26 [5.0%]), IGH-EPOR (3 [0.6%]) and IGH-CRLF2(2 [0.3%]). Genetic alterations were enriched in several functional pathways, of which most frequent was epigenetic regulation (53%), followed by B-cell development (47%), RAS signaling (46%) and cell cycle (40%). A number of novel recurrent genetic lesions were also identified, including those in DOT1L and PHF6. DOT1L encode an H3K79 methyltransferase and was inactivated by frameshift/nonsense mutations and/or deletions in 19 cases. Although frequently found in T-ALL, mutations of PHF6 had not previously been reported in B-ALL but were detected in 14 cases in the current cohort and strongly associated with TCF3-PBX1 translocation. Significant positive correlations were also demonstrated for an additional 10 combinations of common genetic lesions, suggesting functional links between these combinations. Thus, ERG deletions were highly associated with IGH-DUX4 rearrangement, while mutations in KRAS, NRAS, and CREBBP were significantly enriched in hyperdiploid cases. ETV6-RUNX1 fusion also showed positive correlations with alterations in ETV6, CDKN1B, ATF7IP, VPREB1, BTG1, and WHSC1. Furthermore, mutually exclusive relationship between ETV6-RUNX1 translocationsand FLT3mutations were also identified. Finally, we analyzed the prognostic impact of driver mutations. In multivariate analysis of the entire cohort, 4 genetic alterations were significantly associated with poor prognosis (HR [95%CI]): IKZF1 mutations/deletions (2.6 [1.5−4.8]), EBF1 deletions (3.0 [1.4−6.5]), KDM6A mutations/deletions (2.8 [1.2−6.5]), and TP53 mutations (2.7 [1.2−5.9]). Additional factors (q 〈 0.1) were identified in subgroup analyses, including alterations in ETV6 (5.4 [1.2−24]), CDKN1B (7.4 [1.6−33]) and CDKN2A (4.2 [1.4−12]) in ETV6-RUNX1 ALL, KMT2D (5.9 [1.3−26]) in TCF3-PBX1 ALLand TP53 (38 [4.1−364]) in IGH-DUX4ALL. Conclusions We revealed the landscape of genetic lesions in pediatric B-ALL including novel targets of recurrent mutations with clinical relevance of common genetic lesions. Our results should help in the better stratification of patients. Disclosures Ogawa: Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-03
    Description: Introduction: Genetic abnormalities are important to predict prognosis and sometimes can be therapeutic target in pediatric acute lymphoblastic leukemia (ALL). Although the cell lines with recurrent chromosomal abnormalities or leukemic fusions derived from ALL patients are useful tool for various in vitro experiments, it has not been fully investigated whether there is the difference of genetic alterations between clinical samples and cell lines.Here, we performed MLPA analysis of 86 ALL cell lines to determine copy number abnormalities (CNA) and compare with those of the patient's clinical samples. Methods: We performed MLPA analysis of 86 cell lines of ALL (14 with BCR-ABL, 11 with MLL rearrangement, 18 with TCF3-PBX1, 4 with TCF3-HLF, 4 with ETV6-RUNX1 and 35 B-other ALL cell lines) to determine CNA of IKZF1, PAX5, CDKN2A, CDKN2B, ETV6, RB1, BTG1 and EBF1. Then, CNAs were compared to those of patients' samples such as UK cohort (Schwab C, et al. Haematologica, 2013) and Japanese cohort (Asai D, et al. Cancer Med, 2013) according to each specific genetic abnormality, such as BCR-ABL, ETV6-RUNX1, TCF3-PBX1 and MLL-related fusions. In addition, we performed multiplex PCR and RNA-seq to determine fusion transcripts related to Ph-like ALL for the six Ph-negative cell lines with IKZF1 deletions. To determine the expression level of IKZF1 isoform in these cell lines, we performed real time PCR analysis of IKZF1 isoform 1 (IK1) and isoform 6 (IK6). Results: In the BCR-ABL positive cell lines, the frequencies of CDKN2A/2B and BTG1 deletion significantly higher than those in UK cohort (CDKN2A/2B: 100 vs 48%, P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-29
    Description: Introduction Hematopoietic stem cell transplantation (HSCT) is one of the promising treatment strategies for children with refractory Langerhans cell histiocytosis (LCH), because of its immunomodulatory effects.Efficacy and indication of HSCT has been still undetermined. We analyzed the outcomes of HSCT in children with refractory LCH registered in the Transplant Registry Unified Management Program (TRUMP) conducted by the Japanese Society for Hematopoietic Cell Transplantation. Patients and methods Between 1996 and 2014, 30 patients
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-13
    Description: Background: The relapse rate is around 20-40% in adult B-cell acute lymphoblastic leukemia (B-ALL). The genetic defects are the major reasons for the relapse and poor outcome. We screened the genomic variants with Pan-cancer panel in B-ALL patients and whole exome-seq (WES) in the paired de novo-relapsed B-ALL samples. Methods: The xGen Pan-Cancer Panel (IDT), which has been designed with the probes targeting 127 significantly mutated genes from the TCGA database across 12 tumor tissue types (Nature, 502:333-339) was used. Agilent SureSelect Human All Exon V4+UTRs (Agilent) was used to target coding exons plus UTRs for the WES analysis. The genomic DNA from 81 Philadelphia chromosome positive (Ph+) B-ALL patient samples (71 de novo and 10 relapsed, 14 to 77 years old) collected between June 2008 and June 2016 at Zhongda Hospital Southeast University were used for the Pan-cancer panel screening. All DNA samples were sheared and generated approximately 260bp DNA fragments. The fragmented DNA was processed into Illumina compatible sequencing libraries using the Kapa Hyper Prep Kit. Each library was uniquely barcoded and captured by either the Pan-cancer panel or WES probes, followed by PCR amplification and sequencing on a HiSeq 2500 (Illumina) with 2x100 bp reads. The sequencing reads were aligned to the human genome (hg19) by following Broad Institute's GATK best practice pipeline to call germline short variants (SNPs and Indels). Called variants were annotated using ANNOVAR (version 2.3). Variants with exonic, nonsynonymous, stopgain, or stoploss, novel SNPs (not covered by dbSNP138), and with predicted deleterious/damaging functions were manually surveyed by IGV to confirm. Two paired de novo-relapse samples from Ph(+) B-ALL patients were performed the WES analysis. Results: We identified a total of 3945 single nucleotide variants (SNVs), 2222 insertions and deletions (INDELs) in the Pan-cancel panel analysis in 81 Ph(+) B-ALL patients. Among these, 101 genomic variants are with amino acid change, 8 are with stopgain, and 5944 have not been previously reported. We evaluated the frequency and distribution of likely pathogenic variants (PVs) detected in the cohort. Likely PVs were defined by SIFT algorithm which predicts whether an amino acid substitution is likely to affect protein function. Defined by the SIFT's qualitative score 'deleterious', we detected 46 PVs. Among these, PVs were commonly detected in KMT2C, APC, CDKN1A, NSD, BRCA1, EPHA3, and PIK3CG. The PVs were also validated with the Sanger DNA sequencing in the patients. The patients with the likely PVs have significantly higher WBC count (61*10^9/L vs. 24.45*10^9/L, P=0.004). Survival analysis showed that the patients with likely PVs had a worse event-free survival (EFS) and overall survival (OS), the difference was statistically significant (8 months vs. 15 months, P=0.017 and 14 months vs. 25 months, P=0.021). In order to gain an insight to the gene mutations contributing to the disease relapse, we compared the mutants spectrum between the de novo and relapsed samples. We found the genomic variants in NF1, CDK12, mTOR, and USP9X genes appeared mostly in relapsed samples, indicating their roles in the relapse. Using the WES, we further analyzed the genomic variants in two paired de novo and relapsed samples. We detected totally 40354 (de novo) and 16822 (relapsed) genomic variants, and among these 10415 (de novo) and 3082 (relapsed) are with amino acid change in patient 1; likewise, 30130 (de novo) and 14003 (relapse), and among these 7200 (de novo) 2534 (relapsed) with amino acid changes in patient 2. Totally 216 genomic variants with amino acid changes in 162 genes appeared only in the two relapsed samples, among which 10 genomic variants in ADAMTS8, CDK11B, EFCAB4B, FBXL21, HYDIN, IRF2BPL, MIR205HG, PRIM2, ZNF717, ZNF880 appeared in both relapsed samples, revealing their driver roles in relapse. Also, 110 of the 216 genomic variants are not previously reported. Conclusion: Genomic variants in common human cancer driver genes were also detected in B-ALL patients. The new genomic variants detected in the relapse samples may be involved in the oncogenesis of the relapse, which will be further verified with functional analysis. Our data also suggested the significance of developing more efficient new therapies to prevent the relapse in hematological malignancies. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-29
    Description: Background: It is well known that PAX5 related fusion proteins are mainly associated with leukemogenesis of B cell precursor acute lymphoblastic leukemia (B-ALL) through dominant negative effect against normal PAX5, resulting in impairment of B cell differentiation. However, different biological property of PAX5 fusion protein which is related to B-ALL has not been fully investigated. Here, we performed functional analysis of novel fusion protein, PAX5-KIDINS220 (P-K220) which was identified in pediatric Ph-like ALL patient. Methods: Full length of P-K220 fusion gene was cloned into pRetroX-Tight-Pur retroviral vector. We also established the PAX5-N construct that contained only PAX5 region (1-306 aa) of P-K220 so that we could analyze the importance of KIDINS220 in P-K220. Then, Ba/F3 cells, which are IL-3 dependent murine pro B-ALL cells, were transduced with this retroviral vector to establish Ba/F3 cells expressing P-K220 or PAX5-N under doxycycline (DOX) dependent manner. P-K220 was also cloned into pAcGFP1-C1 vector and pMSCVneo vector to perform localization assay and luciferase reporter assay. Gene expression analysis was performed using Mouse Genome 430 2.0 Array. In cytotoxic assay using co-culture system with murine mesenchymal stromal cell, MS-5, Ba/F3 cells that were pre-stained with Carboxyfluorescein diacetate succinimidyl ester (CFSE) were seeded on MS-5 stromal cell, then 10 nM vincristine (VCR) was applied. 72 hours later, flow cytometric analysis was performed to determine the fraction and proliferation ability of viable Ba/F3 cells. The proliferation ability was estimated by CFSE fluorescence that attenuates depending on cell proliferation. Results and discussions: P-K220 and PAX5-N were successfully expressed in Ba/F3 cells, confirmed by western blotting. Localization assay revealed that GFP tagged P-K220 was localized in a nucleus of HEK293-T cells under confocal microscopy, suggesting that P-K220 acted as a transcriptional factor. Luciferase reporter assay revealed that P-K220 protein inhibited PAX5 transcriptional activity in dominant negative fashion. Although P-K220 was identified in Ph-like ALL patient and activated JAK2-STAT5 pathway through reduction of Socs5 expression, Ba/F3 cells expressing P-K220 protein did not acquire IL-3 independency. P-K220 attenuated proliferation of Ba/F3 cells (p=0.02), which was in contrast to PAX5-JAK2. To reveal which pathways were affected by P-K220, gene expression analysis was performed. Gene set enrichment analysis revealed that multiple pathways related to chemotaxis, migration, such as IL-15 pathway, were activated in P-K220 expressing Ba/F3 cells. RQ-PCR and western blotting confirmed P-K220 induced expression of IL-15 in RNA (p=0.018) and protein level, suggesting that P-K220 might be associated with infiltration of leukemic cells into extramedullary site. Next, we examined whether P-K220 was associated with sensitivity of chemotherapeutic agents, such as vincristine (VCR), cytarabine, prednisolone, methotrexate, and 6-mercaptoprine. P-K220 expressing Ba/F3 cells showed higher VCR IC50 (0.4 nM vs 2.5 nM) and decreased Annexin V positive fraction under the condition of 10 nM VCR (39.4 % vs 23.8 %, p=0.04). In co-culture analysis with MS-5 stromal cell under the 10 nM VCR, the fraction of viable Ba/F3 cells that adhered to MS-5 was significantly increased with expression of P-K220 than PAX5-N or Dox (-) (11.6% vs 7.3% vs 6.8%, p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-13
    Description: Background: Though the outcome of patients with acute lymphoblastic leukemia (ALL) has been greatly improved, some high-risk patients still need hematopoietic stem cell transplantation (HSCT). In this study, we evaluated clinical characteristics of children with ALL who were treated according to Japan Association of Childhood Leukemia Study (JACLS) ALL-02 trial and received HSCT to determine prognostic factors for the outcome of HSCT. Methods: Between April 1, 2002 and March 31, 2008, 1,252 patients aged 1-18 years with newly diagnosed ALL were enrolled in JACLS ALL-02 trial. Ph+ALL, mature B-ALL, and NK-leukemia were excluded. Of all the 1,252 patients, 211 (16.8%) patients were reported to receive HSCT, of which 206 patients with adequate information of 1st HSCT were subjected to further analysis. In this study, HSCT in 1st complete remission (CR) in JACLS ALL-02 trial was indicated for the patients with extremely high risk (ER: BCP-ALL with PPR and/or evidence of t(4;11) (or KMT2A-AFF1 positive), hypodiploidy (≤ 44) and/or acute mixed lineage leukemia/ acute unclassified leukemia). As a precaution, in ER patients, the timing of HSCT differs depending on whether they have a matched related donor. Results: Of all the 206 patients, 83 patients received HSCT in first CR (CR1), 68 patients in CR2, 54 patients in non-CR and 1 patient in induction failure (IF). 5-year overall survival (5y-OS) for 206 patients was 50% (95% CI 42.7-56.8). In detail, 73.8% (95% CI 62.6-82.1) for CR1 patients, 49.4% (95% CI 35.9-61.5) for CR2 patients, and 14.8% (95% CI 6.9-25.5) for non-CR patients, respectively. In univariate analysis, JACLS risk classification, disease status at HSCT (CR or non-CR or IF), stem cell source were significant prognostic factors. In multivariate analysis, only disease status retained as prognostic factor (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...