ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-14
    Description: Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jambeck, Jenna R -- Geyer, Roland -- Wilcox, Chris -- Siegler, Theodore R -- Perryman, Miriam -- Andrady, Anthony -- Narayan, Ramani -- Law, Kara Lavender -- New York, N.Y. -- Science. 2015 Feb 13;347(6223):768-71. doi: 10.1126/science.1260352.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Engineering, University of Georgia, 412 Driftmier Engineering Center, Athens, GA 30602, USA. jjambeck@uga.edu. ; Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA. ; Oceans and Atmosphere Flagship, Commonwealth Scientific and Industrial Research Organization, Castray Esplanade, Hobart, Tasmania 7000, Australia. ; DSM Environmental Services, Windsor, VT 05089, USA. ; College of Engineering, University of Georgia, 412 Driftmier Engineering Center, Athens, GA 30602, USA. ; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA. ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA. ; Sea Education Association, Woods Hole, MA 02543, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25678662" target="_blank"〉PubMed〈/a〉
    Keywords: Environmental Pollution/*statistics & numerical data ; Oceans and Seas ; *Plastics ; Seawater ; Waste Management/*statistics & numerical data ; *Waste Products ; *Water Pollutants, Chemical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 546–561, doi:10.1175/JPO-D-14-0082.1.
    Description: Model studies and observations in the Hudson River estuary indicate that frontogenesis occurs as a result of topographic forcing. Bottom fronts form just downstream of lateral constrictions, where the width of the estuary increases in the down-estuary (i.e., seaward) direction. The front forms during the last several hours of the ebb, when the combination of adverse pressure gradient in the expansion and baroclinicity cause a stagnation of near-bottom velocity. Frontogenesis is observed in two dynamical regimes: one in which the front develops at a transition from subcritical to supercritical flow and the other in which the flow is everywhere supercritical. The supercritical front formation appears to be associated with lateral flow separation. Both types of fronts are three-dimensional, with strong lateral gradients along the flanks of the channel. During spring tide conditions, the fronts dissipate during the flood, whereas during neap tides the fronts are advected landward during the flood. The zone of enhanced density gradient initiates frontogenesis at multiple constrictions along the estuary as it propagates landward more than 60 km during several days of neap tides. Frontogenesis and frontal propagation may thus be essential elements of the spring-to-neap transition to stratified conditions in partially mixed estuaries.
    Description: Support for this research was provided by NSF Grant OCE 0926427.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Frontogenesis/frontolysis ; Fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 41 (2014): 8987–8993, doi:10.1002/2014GL062274.
    Description: Observations at the Columbia River plume show that wave breaking is an important source of turbulence at the offshore front, which may contribute to plume mixing. The lateral gradient of current associated with the plume front is sufficient to block (and break) shorter waves. The intense whitecapping that then occurs at the front is a significant source of turbulence, which diffuses downward from the surface according to a scaling determined by the wave height and the gradient of wave energy flux. This process is distinct from the shear-driven mixing that occurs at the interface of river water and ocean water. Observations with and without short waves are examined, especially in two cases in which the background conditions (i.e., tidal flows and river discharge) are otherwise identical.
    Description: This work was supported by the Office of Naval Research, as part of the Data Assimilation and Remote Sensing for Littoral Applications (DARLA) project and in coordination with the Rivers and Inlets (RIVET) program.
    Keywords: Wave breaking ; Turbulence ; Mixing ; Wave-current interaction ; River plume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2773–2789, doi:10.1175/JPO-D-15-0031.1.
    Description: Tidal oscillatory salt transport, induced by the correlation between tidal variations in salinity and velocity, is an important term for the subtidal salt balance under the commonly used Eulerian method of salt transport decomposition. In this paper, its mechanisms in a partially stratified estuary are investigated with a numerical model of the Hudson estuary. During neap tides, when the estuary is strongly stratified, the tidal oscillatory salt transport is mainly due to the hydraulic response of the halocline to the longitudinal variation of topography. This mechanism does not involve vertical mixing, so it should not be regarded as oscillatory shear dispersion, but instead it should be regarded as advective transport of salt, which results from the vertical distortion of exchange flow obtained in the Eulerian decomposition by vertical fluctuations of the halocline. During spring tides, the estuary is weakly stratified, and vertical mixing plays a significant role in the tidal variation of salinity. In the spring tide regime, the tidal oscillatory salt transport is mainly due to oscillatory shear dispersion. In addition, the transient lateral circulation near large channel curvature causes the transverse tilt of the halocline. This mechanism has little effect on the cross-sectionally integrated tidal oscillatory salt transport, but it results in an apparent left–right cross-channel asymmetry of tidal oscillatory salt transport. With the isohaline framework, tidal oscillatory salt transport can be regarded as a part of the net estuarine salt transport, and the Lagrangian advective mechanism and dispersive mechanism can be distinguished.
    Description: Tao Wang was supported by the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (Grant SKLEC-KF201509) and Chinese Scholarship Council. Geyer was supported by by NSF Grant OCE 0926427. Wensheng Jiang was supported by NSFC-Shandong Joint Fund for Marine Science Research Centers (Grant U1406401).
    Description: 2016-05-01
    Keywords: Geographic location/entity ; Estuaries ; Circulation/ Dynamics ; Baroclinic flows ; Dispersion ; Shear structure/flows ; Atm/Ocean Structure/ Phenomena ; Diapycnal mixing ; Models and modeling ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8818–8837, doi:10.1002/2014JC010191.
    Description: The outflowing currents from tidal inlets are influenced both by the morphology of the ebb-tide shoal and interaction with incident surface gravity waves. Likewise, the propagation and breaking of incident waves are affected by the morphology and the strength and structure of the outflowing current. The 3-D Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system is applied to numerically analyze the interaction between currents, waves, and bathymetry in idealized inlet configurations. The bathymetry is found to be a dominant controlling variable. In the absence of an ebb shoal and with weak wave forcing, a narrow outflow jet extends seaward with little lateral spreading. The presence of an ebb-tide shoal produces significant pressure gradients in the region of the outflow, resulting in enhanced lateral spreading of the jet. Incident waves cause lateral spreading and limit the seaward extent of the jet, due both to conversion of wave momentum flux and enhanced bottom friction. The interaction between the vorticity of the outflow jet and the wave stokes drift is also an important driving force for the lateral spreading of the plume. For weak outflows, the outflow jet is actually enhanced by strong waves when there is a channel across the bar, due to the “return current” effect. For both strong and weak outflows, waves increase the alongshore transport in both directions from the inlet due to the wave-induced setup over the ebb shoal. Wave breaking is more influenced by the topography of the ebb shoal than by wave-current interaction, although strong outflows show intensified breaking at the head of the main channel.
    Description: We are grateful to the Career Training Interexchange program that facilitated the training period of Maitane Olabarrieta within the USGS. Maitane Olabarrieta also acknowledges funding from the “Cantabria Campus International Augusto Gonzalez Linares Program.”WRG was supported by ONR grant N00014-13-1–0368.
    Description: 2015-06-23
    Keywords: Wave-current interaction ; Tidal inlets ; Nearshore ; Hydrodynamics ; Plane jet ; Vortex force method ; Rip current ; COAWST modeling system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...