ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Soil Science Society of America (SSSA)  (3)
  • 2020-2023
  • 2015-2019  (3)
  • 1940-1944
  • 2015  (3)
Collection
Years
  • 2020-2023
  • 2015-2019  (3)
  • 1940-1944
Year
  • 1
    Publication Date: 2015-05-16
    Description: In porous media, the nonwetting phase is trapped on water saturation due to capillary forces acting in a heterogeneous porous structure. Within the capillary fringe, the gas phase is trapped and released along with the fluctuation of the water table, creating a highly active zone for biological transformations and mass transport. We conducted column experiments to observe and quantify the magnitude and structure of the trapped gas phase at the pore scale using computed microtomography. Different grain size distributions of glass beads were used to study the effect of the pore structure on trapping at various capillary numbers. Viscous forces were found to have negligible impact on phase trapping compared with capillary and buoyancy forces. Residual gas saturations ranged from 0.5 to 10%, while residual saturation increased with decreasing grain size. The gas phase was trapped by snap-off in single pores but also in pore clusters, while this single-pore trapping was dominant for grains larger than 1 mm in diameter. Gas surface area was found to increase linearly with increasing gas volume and with decreasing grain size.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Soil Science Society of America (SSSA)
    Publication Date: 2015-05-16
    Description: Processes in capillary fringes (CFs) have a complex nature due to the interactions between the solid, liquid, and gaseous environments. Despite a considerable body of literature on CFs coming from different disciplines, the ongoing processes and their complex interactions are yet only partially understood.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-18
    Description: Water flow and solute transport in unsaturated porous media are affected by the highly nonlinear material properties and nonequilibrium effects. This makes experimental procedures and modeling of water flow and solute transport challenging. In this study, we present an extension to the well-known multistep-outflow (MS-O) and the newly introduced multistep-flux (MS-F) approaches to measure solute dispersivity as a function of water content under well-defined conditions (i.e., constant pressure head and uniform water content). The new approach is termed multistep-transport (MS-T) and complements the MS-O and MS-F approaches. Our setup allows for applying all three approaches in a single experimental setting. Hence, it provides a comprehensive data set to parameterize unsaturated flow and transport processes in a consistent way. We demonstrate this combined approach (MS-OFT) for sand (grain diameter: 0.1–0.3 mm) and complemented the experimental results with an analysis of the underlying pore structure using X-ray computed tomography (CT). The results show that dispersivity is a nonlinear function of water content, and a critical water content (0.2) exists at which dispersivity increased significantly. The results could be explained by marked change in the geometry of the flow field as derived from X-ray CT measurements. It is characterized by a reduced connectivity of the water phase. The results demonstrate the potential of a combined approach linking pore structure, hydraulic functions, and transport characteristic.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...