ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient Martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550 degrees Centigrade and 950 degrees Centigrade from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (plus or minus 0.2) times the ratio in standard mean ocean water. The D/H ratio in this approximately 3-billion-year-old mudstone, which is half that of the present Martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN32645 , Science; 347; 6220; 412-414
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present spectrally and spatially resolved maps of HNC and HC3N emission from Titan's atmosphere, obtained using the Atacama Large Millimeter/submillimeter Array on 2013 November 17. These maps show anisotropic spatial distributions for both molecules, with resolved emission peaks in Titan's northern and southern hemispheres. TheHC3N maps indicate enhanced concentrations of this molecule over the poles, consistent with previous studies of Titan's photochemistry and atmospheric circulation. Differences between the spectrally integrated flux distributions of HNC and HC3N show that these species are not co-spatial. The observed spectral line shapes are consistent with HNC being concentrated predominantly in the mesosphere and above (at altitudes z approx.. greater than 400 km), whereas HC3N is abundant at a broader range of altitudes (z approx. equal to 70-600 km). From spatial variations in the HC3N line profile, the locations of the HC3N emission peaks are shown to be variable as a function of altitude. The peaks in the integrated emission from HNC and the line core (upper atmosphere) component of HC3N (at z approx. greater than 300 km) are found to be asymmetric with respect to Titan's polar axis, indicating that the mesosphere may be more longitudinally variable than previously thought. The spatially integrated HNC and HC3N spectra are modeled using the NEMESIS planetary atmosphere code and the resulting best-fitting disk-averaged vertical mixing ratio profiles are found to be in reasonable agreement with previous measurements for these species. Vertical column densities of the best-fitting gradient models for HNC and HC3N are 1.9 10(exp 13) per sq.cm and 2.3 10(exp 14) per sq.cm, respectively.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19742 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 795; 2; L30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The seasonal evolution of Saturn's polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 micrometers thermal infrared spectroscopy. We construct a near-continuous record of atmospheric variability poleward of 60 deg from northern winter/southern summer (2004, Ls = 293 deg) through the equinox (2009, Ls= 0 deg) to northern spring/southern autumn (2014, Ls = 56 deg). The hot tropospheric polar cyclones that are entrained by pro-grade jets within 2-3 deg of each pole, and the hexagonal shape of the north polar belt, are both persistent features throughout the decade of observations. The hexagon vertices rotated westward by approx. equal to 30 deg longitude between March 2007 and April 2013, confirming that they are not stationary in the Voyager-defined System III longitude system as previously thought. Tropospheric temperature contrasts between the cool polar zones (near 80-85 deg) and warm polar belts (near 75-80 deg) have varied in both hemispheres, resulting in changes to the vertical wind shear on the zonal jets in the upper troposphere and lower stratosphere. The extended region of south polar stratospheric emission has cooled dramatically poleward of the sharp temperature gradient near 75 deg S (by approximately -5 K/yr), coinciding with a depletion in the abundances of acetylene (0030 +/- 0.005 ppm/yr) and ethane (0.35 +/- 0.1 ppm/yr), and suggestive of stratospheric upwelling with vertical wind speeds of w approx. equal to +0.1 mm/s. The upwelling appears most intense within 5 deg latitude of the south pole. This is mirrored by a general warming of the northern polar stratosphere (+5 K/yr) and an enhancement in acetylene (0.030 +/- 0.003 ppm/yr) and ethane (0.45 +/- 0.1 ppm/yr) abundances that appears to be most intense poleward of 75 deg N, suggesting subsidence at w approx. equal to -0.15 mm/ s. However, the sharp gradient in stratospheric emission expected to form near 75 deg N by northern summer solstice (2017, Ls = 90 deg) has not yet been observed, so we continue to await the development of a northern summer stratospheric vortex. The peak stratospheric warming in the north occurs at lower pressure levels (p less than 1 mbar) than the peak stratospheric cooling in the south (p greater than 1 mbar). Vertical motions are derived from both the temperature field (using the measured rates of temperature change and the deviations from the expectations of radiative equilibrium models) and hydrocarbon distributions (solving the continuity equation). Vertical velocities tend towards zero in the upper troposphere where seasonal temperature contrasts are smaller, except within the tropospheric polar cyclones where w approx. equal to +0.02 mm/s. North polar minima in tropospheric and stratospheric temperatures were detected in 2008-2010 (lagging one season, or 6-8 years, behind winter solstice); south polar maxima appear to have occurred before the start of the Cassini observations (1-2 years after summer solstice), consistent with the expectations of radiative climate models. The influence of dynamics implies that the coldest winter temperatures occur in the 75-80 deg region in the stratosphere, and in the cool polar zones in the troposphere, rather than at the poles themselves. In addition to vertical motions, we propose that the UV-absorbent polar stratospheric aerosols entrained within Saturn's vortices contribute significantly to the radiative budget at the poles, adding to the localized enhancement in the south polar cooling and north polar warming poleward of +/-75 deg.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN21255 , Icarus (ISSN 0019-1035); 250; 131-153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustratedby the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scienti-c goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussedthroughout this paper : rst, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopiccomposition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk OH ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to mostextrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Dierent mission architectures are envisaged, which would benet from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bars of atmospheric pressure. We rally discuss the science payload required on a Saturn probe to match the measurement requirements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19065 , Planetary and Space Sciences Journal; 104; A; 29-47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...